Answer:
Hay diversas leyes que podemos usar acá.
Acá sabemos que la vejiga aumenta su tamaño al reducir la presión, esto tiene sentido, pues al haber menos presión, hay menos fuerza que comprime la vejiga, lo que le permite aumentar su volumen.
Acá tenemos una relación inversa de la forma: V = K/P
Una relación inversa donde la presión esta en el denominador y K es un termino que no depende ni del volumen ni de la presión.
Entonces, a medida que aumenta P, el denominador aumenta, por lo que el valor del volumen decrece.
Un ejemplo de una ecuación similar es la del gas ideal, por ejemplo, para un gas ideal dentro de un globo de volumen V para una dada presión P:
V = nRT/P
donde n es el numero de moles, R es la constante termodinámica y T es la temperatura, acá podemos ver que esta ecuación tiene la misma forma fundamental que la escrita arriba.
The final atmospheric pressure is 
Explanation:
Assuming that the temperature of the air does not change, we can use Boyle's law, which states that for a gas kept at constant temperature, the pressure of the gas is inversely proportional to its volume. In formula,

where
p is the gas pressure
V is the volume
The equation can also be rewritten as

where in our problem we have:
is the initial pressure (the atmospheric pressure at sea level)
is the initial volume
is the final pressure
is the final volume
Solving the equation for p2, we find the final pressure:

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
The correct option is D.
Lumen is used to quantify the amount of total light energy that a source is putting out in all direction, thus, it refers to luminous output of a light source. Initial lumen refers to the luminosity of a light when it was first turned on; the luminosity is highest at this point.
Increasing the angle of inclination of the plane decreases the velocity of the block as it leaves the spring.
- The statement that indicates how the relationship between <em>v</em> and <em>x</em> changes is;<u> As </u><u><em>x</em></u><u> increases, </u><u><em>v</em></u><u> increases, but the relationship is no longer linear and the values of </u><u><em>v</em></u><u> will be less for the same value of </u><u><em>x</em></u><u>.</u>
Reasons:
The energy given to the block by the spring = 
According to the principle of conservation of energy, we have;
On a flat plane, energy given to the block =
= kinetic energy of
block = 
Therefore;
0.5·k·x² = 0.5·m·v²
Which gives;
x² ∝ v²
x ∝ v
On a plane inclined at an angle θ, we have;
The energy of the spring = 
- The force of the weight of the block on the string,

The energy given to the block =
= The kinetic energy of block as it leaves the spring = 
Which gives;

Which is of the form;
a·x² - b = c·v²
a·x² + c·v² = b
Where;
a, b, and <em>c</em> are constants
The graph of the equation a·x² + c·v² = b is an ellipse
Therefore;
- As <em>x</em> increases, <em>v</em> increases, however, the value of <em>v</em> obtained will be lesser than the same value of <em>x</em> as when the block is on a flat plane.
<em>Please find attached a drawing related to the question obtained from a similar question online</em>
<em>The possible question options are;</em>
- <em>As x increases, v increases, but the relationship is no longer linear and the values of v will be less for the same value of x</em>
- <em>The relationship is no longer linear and v will be more for the same value of x</em>
- <em>The relationship is still linear, with lesser value of v</em>
- <em>The relationship is still linear, with higher value of v</em>
- <em>The relationship is still linear, but vary inversely, such that as x increases, v decreases</em>
<em />
Learn more here:
brainly.com/question/9134528