For a constant-velocity object, the average and instantaneous are the same. So the answer is no. It's like taking a running average of a string of numbers that are all the same number. The average is always the sum of the numbers divided by how many have accumulated, which will always equate to the repeated number.
Answer:
Avoid downed power lines and stay away from buildings and bridges from which heavy objects might fall during an aftershock. Stay away until local officials tell you it is safe. A tsunami is a series of waves that may continue for hours. Do not assume that after one wave the danger is over.
True.
A contact force is a force between two objects that are physically in contact with each other: an example of a contact force is the normal reaction of a table supporting a book.
A non-contact force is a force between two objects that are not physically in contact with each other: an example of non-contact force is the gravitational attraction between the Earth and the Moon.
Answer:
Energy is transferred from Priya to the box.
Explanation:
Pls mark as brainliest
Answer:
F₃ = 122.88 N
θ₃ = 20.63°
Explanation:
First we find the components of F₁:
For x-component:
F₁ₓ = F₁ Cos θ₁
F₁ₓ = (50 N) Cos 60°
F₁ₓ = 25 N
For y-component:
F₁y = F₁ Sin θ₁
F₁y = (50 N) Sin 60°
F₁y = 43.3 N
Now, for F₂. As, F₂ acts along x-axis. Therefore, its y-component will be zero and its x-xomponent will be equal to the magnitude of force itself:
F₂ₓ = F₂ = 90 N
F₂y = 0 N
Now, for the resultant force on ball to be zero, the sum of x-components of the forces and the sum of the y-component of the forces must also be equal to zero:
F₁ₓ + F₂ₓ + F₃ₓ = 0 N
25 N + 90 N + F₃ₓ = 0 N
F₃ₓ = - 115 N
for y-components:
F₁y + F₂y + F₃y = 0 N
43.3 N + 0 N + F₃y = 0 N
F₃y = - 43.3 N
Now, the magnitude of F₃ can be found as:
F₃ = √F₃ₓ² + F₃y²
F₃ = √[(- 115 N)² + (- 43.3 N)²]
<u>F₃ = 122.88 N</u>
and the direction is given as:
θ₃ = tan⁻¹(F₃y/F₃ₓ) = tan⁻¹(-43.3 N/-115 N)
<u>θ₃ = 20.63°</u>