Answer:
Part A) the angular acceleration is α= 44.347 rad/s²
Part B) the angular velocity is 195.13 rad/s
Part C) the angular velocity is 345.913 rad/s
Part D ) the time is t= 7.652 s
Explanation:
Part A) since angular acceleration is related with angular acceleration through:
α = a/R = 10.2 m/s² / 0.23 m = 44.347 rad/s²
Part B) since angular acceleration is related
since
v = v0 + a*(t-t0) = 51.0 m/s + (-10.2 m/s²)*(3.4 s - 2.8 s) = 44.88 m/s
since
ω = v/R = 44.88 m/s/ 0.230 m = 195.13 rad/s
Part C) at t=0
v = v0 + a*(t-t0) = 51.0 m/s + (-10.2 m/s²)*(0 s - 2.8 s) = 79.56 m/s
ω = v/R = 79.56 m/s/ 0.230 m = 345.913 rad/s
Part D ) since the radial acceleration is related with the velocity through
ar = v² / R → v= √(R * ar) = √(0.23 m * 9.81 m/s²)= 1.5 m/s
therefore
v = v0 + a*(t-t0) → t =(v - v0) /a + t0 = ( 1.5 m/s - 51.0 m/s) / (-10.2 m/s²) + 2.8 s = 7.652 s
t= 7.652 s
Answer:
C
Explanation:
First find the electrical wattage
W = I^2 * R
R = 12 ohms
I = 2 amps
Wattage = 2^2 * 12
Wattage = 4* 12
Wattage = 48 watts.
Now you need to use the power formula
Work = Power * Time
Work = ?
Power = 48 watts
Time = 3 minutes = 3 * 60 = 180 seconds.
Work = 48 * 180
Work = 8640 J
That's C
Answer:
6.5454 m
Explanation:
Let the distance from the wire carrying 3 A current is x
Then the distance from the the carrying current 8 A is 24-x
We know that magnetic field due to long wire is given by
It is given that magnetic field is zero at some distance so

Here
So 
Answer:
Force on the object is 20 N
Explanation:
As we know that work done to raise the book from initial position to final position is known as potential energy stored in it
So here we know that

here we know that
U = 30 J
s = displacement = 1.5 m
so we have


Answer:
a)W=8.333lbf.ft
b)W=0.0107 Btu.
Explanation:
<u>Complete question</u>
The force F required to compress a spring a distance x is given by F– F0 = kx where k is the spring constant and F0 is the preload. Determine the work required to compress a spring whose spring constant is k= 200 lbf/in a distance of one inch starting from its free length where F0 = 0 lbf. Express your answer in both lbf-ft and Btu.
Solution
Preload = F₀=0 lbf
Spring constant k= 200 lbf/in
Initial length of spring x₁=0
Final length of spring x₂= 1 in
At any point, the force during deflection of a spring is given by;
F= F₀× kx where F₀ initial force, k is spring constant and x is the deflection from original point of the spring.

Change to lbf.ft by dividing the value by 12 because 1ft=12 in
100/12 = 8.333 lbf.ft
work required to compress the spring, W=8.333lbf.ft
The work required to compress the spring in Btu will be;
1 Btu= 778 lbf.ft
?= 8.333 lbf.ft----------------cross multiply
(8.333*1)/ 778 =0.0107 Btu.