Answer:
The percent by mass of water in this crystal is:
Explanation:
This exercise can be easily solved using a simple rule of three where the initial weight of the hydrated crystal (6,235 g) is taken into account as 100% of the mass, and the percentage to which the mass of 4.90 g corresponds (after getting warm). First, the values and unknown variable are established:
- 6,235 g = 100%
- 4.90 g = X
And the value of the variable X is found:
- X = (4.90 g * 100%) / 6,235 g
- X = approximately 78.6%.
The calculated value is not yet the percentage of the water, since the water after heating the glass has evaporated, therefore, the remaining percentage must be taken, which can be calculated by subtraction:
- Water percentage = Total percentage - Percentage after heating.
- <u>Water percentage = 100% - 78.6% = 21.4%</u>
Answer:
"nonmetal, nonmetal"
Explanation:
Oxygen is a non metal and Nitrogen is a non metal. It is 8th element of the periodic table. It is located in period 2 and group 16.
Nitrogen lies at the group 15 of the periodic table. Its atomic no is 7. Its valency is 2.
Hence, the correct option is (c) "nonmetal, nonmetal".
Answer:
Yes
Explanation: Had a question like this and I said yes and got it right
Chemical
bonds between atoms in reactants undergo change during a chemical
reaction.
<span>The substance (or substances) initially involved in a </span>chemical reaction<span> <span>are
called reactants or reagents. </span></span>Chemical reactions<span> <span>are
usually characterized by a </span></span>chemical<span> change,
and they yield one or more products, which usually have properties different
from the reactants.</span>
The correct answer between all
the choices given is the last choice or letter D. I am hoping that this answer
has satisfied your query and it will be able to help you in your endeavor, and
if you would like, feel free to ask another question.
Answer:
8.3
Explanation:
pH is the measure of the H+ or H30 (they r the same thing) ions in a solution. it is equal to -log[H+]. [H+]= Molar concentration of H+ ions.