
so:



so:

it means that
in

of acid there is

moles of acid

so:

it means that:
in

of water there is

moles of water
therefore:

So your answers are:

and the mole fraction is:
Answer:
4.13 moles of Fe.
Explanation:
Given data:
Moles of iron produced = ?
Moles of Fe₂O₃ = 3.5 mol
Moles of CO = 6.2 mol
Solution:
Chemical equation:
Fe₂O₃ + 3CO → 2Fe + 3CO₂
Now we will compare the moles of iron with CO and Fe₂O₃.
Fe₂O₃ : Fe
1 : 2
3.5 : 2/1×3.5 = 7 mol
CO : Fe
3 : 2
6.2 : 2/3×6.2 = 4.13 mol
The number of moles of iron produced by CO are less it will limiting reactant.
Thus, moles of iron formed in given reaction are 4.13 moles.
Answer:
4.6305 * 10^-6 mol^3.L^-3
Explanation:
Firstly, we write the value for the solubility of Ca(IO3)2 in pure water. This equals 0.0105mol/L.
We proceed to write the dissociation reaction equation for Ca(IO3)2
Ca(IO3)2(s) <——->Ca2+(aq) + 2IO3-(aq)
We set up an ICE table to calculate the Ksp. ICE stands for initial, change and equilibrium. Let the concentration of the Ca(IO3)2 be x. We write the values for the ICE table as follows:
Ca2+(aq). 2IO3-(aq)
I. 0. 0.
C. +x. +2x
E. x. 2x
The solubility product Ksp = [Ca2+][IO3-]^2
Ksp = x * (2x)^2
Ksp = 4x^3
Recall, the solubility value for Ca(IO3)2 in pure water is 0.0105mol/L
We substitute this value for x
Ksp = 4(0.0105)^2 = 4 * 0.000001157625 = 4.6305 * 10^-6
Hey there!:
Mass = 2.98 g
Volume = 2.12 L
Therefore:
Density = mass / volume
Density = 2.98 / 2.12
Density = 1.405 g/L