Explanation:
Different atoms binds their outermost shell electrons with different amount of energy.
The amount of energy required to remove an electron from an atom is the ionization energy.
- Ionization energy measures the readiness of an atom to lose electrons.
- From the given problem, we can infer that in group O the ionization energy decreases down the group.
- Helium has the highest ionization energy.
- Down a group on the periodic table, ionization energy decrease because:
- atomic radii increases down the group.
- there is an increasing shielding/screening effect of inner shell electrons on the outermost shell electrons.
Learn more:
Ionization energy brainly.com/question/2153804
#learnwithBrainly
Answer: Computational genomics (often referred to as Computational Genetics) refers to the use of computational and statistical analysis to decipher biology from genome sequences and related data, including both DNA and RNA sequence as well as other "post-genomic" data
Explanation: hope this helps
<span>Light
from the sun provides energy for life’s processes. It enables the primary
producers (photosynthetic organisms) such as phytoplankton
and plants to produce organic molecules from abiotic factors. This energy is passed up as primary and secondary
consumers consume these producers and this cycle
continues up the foods chain/web. </span>
Explanation:
It is known that the relation between pH and
is as follows.
pH = ![pK_{a} + log \frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pK_%7Ba%7D%20%2B%20log%20%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
and, 
Hence, first we will calculate the value of
as follows.

=
= 4.75
Now, we will calculate the value of pH as follows.
pH = ![pK_{a} + log \frac{[\text{sodium acetate}]}{\text{acetic acid}}](https://tex.z-dn.net/?f=pK_%7Ba%7D%20%2B%20log%20%5Cfrac%7B%5B%5Ctext%7Bsodium%20acetate%7D%5D%7D%7B%5Ctext%7Bacetic%20acid%7D%7D)
=
= 4.75 + (-0.677)
= 4.07
Therefore, we can conclude that the pH of given solution is 4.07.