We would just get three times heavier.
weight = mass x gravity (9.8 m/s/s)
The chemical bonds alow it to pass to the other object.
Answer:
Some examples of levers include more than one class, such as a nut cracker, a stapler, nail clippers, ice tongs and tweezers. Other levers, called single class levers include the claw end of a hammer.
Explanation:
Answer:
D = 18000 kg/m3
V = 2.5*10{-7}m3
Explanation:
From the Archimedes principle,
Weight of fluid displaced = W_{air} - W_{water}
W_{air} = 4.5 gm
W_{water} = 4.25 gm
![W = [4.5 - 4.25]*9.81*10^{-3}](https://tex.z-dn.net/?f=W%20%3D%20%5B4.5%20-%204.25%5D%2A9.81%2A10%5E%7B-3%7D)
W = 2.4525*10{-3} N
![\frac{density\ of\ object}{density\ of\ fluid} = \frac{weight\ in\ air}{weight\ of\ displaced\ fluid}](https://tex.z-dn.net/?f=%5Cfrac%7Bdensity%5C%20of%5C%20object%7D%7Bdensity%5C%20of%5C%20fluid%7D%20%3D%20%5Cfrac%7Bweight%5C%20in%5C%20air%7D%7Bweight%5C%20of%5C%20displaced%5C%20fluid%7D)
![Density\ of\ object = \frac{D_{water}*Weight\ in\ air}{weight\ of\ displaced\ water}](https://tex.z-dn.net/?f=Density%5C%20of%5C%20object%20%3D%20%5Cfrac%7BD_%7Bwater%7D%2AWeight%5C%20in%5C%20air%7D%7Bweight%5C%20of%5C%20displaced%5C%20water%7D)
![D = \frac{1000*4.5*10^{-3}*9.8}{2.4525*10^{-3}}N](https://tex.z-dn.net/?f=D%20%3D%20%5Cfrac%7B1000%2A4.5%2A10%5E%7B-3%7D%2A9.8%7D%7B2.4525%2A10%5E%7B-3%7D%7DN)
D = 18000 kg/m3
b) object Volume can be obtained as ,
![V = \frac{m}{D} = \frac{4.5*10^{-3}}{18000}](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7Bm%7D%7BD%7D%20%3D%20%5Cfrac%7B4.5%2A10%5E%7B-3%7D%7D%7B18000%7D)
V = 2.5*10{-7}m3
To solve this problem it is necessary to use the concepts of Force of a spring through Hooke's law, therefore,
![F = kx](https://tex.z-dn.net/?f=F%20%3D%20kx)
Where,
k = Spring constant
x = Displacement
Initially our values are given,
![F = 685N](https://tex.z-dn.net/?f=F%20%3D%20685N)
![x = 0.88 cm](https://tex.z-dn.net/?f=x%20%3D%200.88%20cm)
PART A ) With this values we can calculate the spring constant rearranging the previous equation,
![k = \frac{F}{x}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7BF%7D%7Bx%7D)
![k = \frac{685}{0.88*10^-2}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7B685%7D%7B0.88%2A10%5E-2%7D)
![k = 77840.9N/m](https://tex.z-dn.net/?f=k%20%3D%2077840.9N%2Fm)
PART B) Since the constant is unique to the spring, we can now calculate the force through the new elongation (0.38cm), that is
![F = kx](https://tex.z-dn.net/?f=F%20%3D%20kx)
![F = (77840.9)(0.0038)](https://tex.z-dn.net/?f=F%20%3D%20%2877840.9%29%280.0038%29)
![F = 295.79N](https://tex.z-dn.net/?f=F%20%3D%20295.79N)
Therefore the weight of another person is 265.79N.