Answer: The pressure in the can is 4.0 atm
Explanation:
According to ideal gas equation:
P = pressure of gas = ?
V = Volume of gas = 0.410 L
n = number of moles =
R = gas constant =
T =temperature =
Thus the pressure in the can is 4.0 atm
<span>The alkali metals and hydrogen are reactive because they have only one electron to give in order to complete their valence shell. It is easier to give that one electron so when given the opportunity they will. This means they will react with anything polar or willing to take an electron.</span>
The balanced equation for the above reaction is as follows;
2C₈H₁₈ + 25O₂ ---> 16CO₂ + 18H₂O
stoichiometry of octane to CO₂ is 2:16
number of C₈H₁₈ moles reacted - 191.6 g / 114 g/mol = 1.68 mol
when 2 mol of octane reacts it forms 16 mol of CO₂
therefore when 1.68 mol of octane reacts - it forms 16/2 x 1.68 = 13.45 mol of CO₂
number of CO₂ moles formed - 13.45 mol
therefore mass of CO₂ formed - 13.45 mol x 44 g/mol = 591.8 g
mass of CO₂ formed is 591.8 g
For Iron:

For Oxygen:

These are the two chemical symbols for the two elements found in Iron Oxide.