A :-) for this question , we should apply
F = ma
Given - F = 12 N
a = 0.20 m/s^2
Solution -
F = ma
12 = m x 0.20
m = 12 by 0.20
m = 60 kg
.:. The mass is 60 kg.
As we know that KE and PE is same at a given position
so we will have as a function of position given as

also the PE is given as function of position as

now it is given that
KE = PE
now we will have




so the position is 0.707 times of amplitude when KE and PE will be same
Part b)
KE of SHO at x = A/3
we can use the formula

now to find the fraction of kinetic energy



now since total energy is sum of KE and PE
so fraction of PE at the same position will be


For this case we have that by definition, a micrometer is equivalent to a thousandth of a millimeter, that is, 0.001 millimeters.
Then, in other words, we have 0.001 millimeters in a micrometer.
Answer:
In a micrometer there are 0.001 millimeters.
Answer:
85.8 m/s
Explanation:
We know that the length of the circular path, L the plane travels is
L = rθ where r = radius of path and θ = angle covered
Now,its speed , v = dL/dt = drθ/dt = rdθ/dt + θdr/dt
where dθ/dt = ω = angular speed = v'/r where v' = maximum speed of plane and r = radius of circular path
Now, from θ = θ₀ + ωt where θ₀ = 0 rad, ω = angular speed and t = time,
θ = θ₀ + ωt = 0 + ωt = ωt
So, v = rdθ/dt + θdr/dt
v = rω + ωtdr/dt
v = (r + tdr/dt)ω
v = (r + tdr/dt)v'/r
v = v' + tv'/r(dr/dt)
v = v'[1 + t(dr/dt)/r]
Given that v' = 110 m/s, t = 33.0s, r = 120 m and dr/dt = rate at which line is shortened = -0.80 m/s (negative since it is decreasing)
So, v = 110 m/s[1 + 33.0 s(-0.80 m/s)/120 m]
v = 110 m/s[1 + 11.0 s(-0.80 m/s)/40 m]
v = 110 m/s[1 + 11.0 s(-0.02/s)]
v = 110 m/s[1 - 0.22]
v = 110 m/s(0.78)
v = 85.8 m/s
Answer: Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves.
Explanation: