radio waves,X-rays,
Explanation:
In order from highest to lowest energy, the sections of the EM spectrum are named: gamma rays, X-rays, ultraviolet radiation, visible light, infrared radiation, and radio waves. Microwaves (like the ones used in microwave ovens) are a subsection of the radio wave segment of the EM spectrum.
epicycles were orbits within orbits used to explain discrepancies between expected and observed planetary movement, including the appearance of planets slowing down, speeding up, and moving backward.
Answer:
Explanation:
Using the magnification formula.
Magnification = Image distance(v)/object distance(u) = Image Height(H1)/Object Height(H2)
M = v/u = H1/H2
v/u = H1/H2...1
3) Given the radius of curvature of the concave lens R = 20cm
Focal length F = R/2
f = 20/2
f = 10cm
Object distance u = 5cm
Object height H2= 5cm
To get the image distance v, we will use the mirror formula
1/f = 1/u+1/v
1/v = 1/10-1/5
1/v = (1-2)/10
1/v =-1/10
v = -10cm
Using the magnification formula
(10)/5 = H1/5
10 = H1
H1 = 10cm
Image height of the peg is 10cm
4) If u = 15cm
1/v = 1/f-1/u
1/v = 1/10-1/15
1/v = 3-2/30
1/v = 1/30
v = 30cm
30/15 = H1/5
15H1 = 150
H1/= 10cm
5) if u = 20cm
1/v = 1/f-1/u
1/v = 1/10-1/20
1/v = 2-1/20
1/v = 1/20
v = 20cm
20/20 = H1/5
20H1 = 100
H1 = 5cm
6) If u = 30cm
1/v = 1/f-1/u
1/v = 1/10-1/30
1/v = 3-1/30
1/v = 2/30
v = 30/2 cm
v =>15cm
15/30 = Hi/5
30H1 = 75
H1 = 75/30
H1 = 2.5cm
Any one trial might have been done incorrectly.
Answer:
The electric field at origin is 3600 N/C
Solution:
As per the question:
Charge density of rod 1, 
Charge density of rod 2, 
Now,
To calculate the electric field at origin:
We know that the electric field due to a long rod is given by:

Also,
(1)
where
K = electrostatic constant = 
R = Distance
= linear charge density
Now,
In case, the charge is positive, the electric field is away from the rod and towards it if the charge is negative.
At x = - 1 cm = - 0.01 m:
Using eqn (1):

(towards)
Now, at x = 1 cm = 0.01 m :
Using eqn (1):

(towards)
Now, the total field at the origin is the sum of both the fields:
