The complete question is missing, so i have attached the complete question.
Answer:
A) FBD is attached.
B) The condition that must be satisfied is for ω_min = √(g/r)
C) The tension in the string would be zero. This is because at the smallest frequency, the only radially inward force at that point is the weight(force of gravity).
Explanation:
A) I've attached the image of the free body diagram.
B) The formula for the net force is given as;
F_net = mv²/r
We know that angular velocity;ω = v/r
Thus;
F_net = mω²r
Now, the minimum downward force is the weight and so;
mg = m(ω_min)²r
m will cancel out to give;
g = (ω_min)²r
(ω_min)² = g/r
ω_min = √(g/r)
The condition that must be satisfied is for ω_min = √(g/r)
C) The tension in the string would be zero. This is because at the smallest frequency, the only radially inward force at that point is the weight(force of gravity).
The work done to push the refrigerator is 500 Nm.
Explanation:
Work done is the measure of force required to move any object from one point to another. So it is calculated as the product of force and displacement.
If the force increases the work done will increase and similarly, the increase in displacement increases the work done. So to push the refrigerator work should be done on the object and not by the object.
As the force is 100 N and the displacement is 5 m then, work done can be measured as
Work = Force × Displacement
Work = 100 × 5 = 500 Nm
So the work done to push the refrigerator is 500 Nm.
Answer:
no se porque xD jajjakajajjajajajjaj
Gas. I know this because first you will need to do the equator so I will say gas
We need to considerate only the horizontal component of the motion of the toy car.
The formula for the distance in a decelerated motion is:
s = s₀ + v₀·t - 1/2·a·t²
where:
s₀ = initial position = 0
v₀ = initial velocity = 1.21 m/s
t = time elapsed = 0.342 s
a = deceleration = 0.131 m/s²
Plugging in numbers:
s = 0 + 1.21×0.342 - 0.5×0.141×(0.342)²
= 0.406 m
Hence, the toy car traveled a distance of about 41 cm.