Answer:
Carbon Dioxide
Explanation:
Carbon dioxide gets turned into oxygen
Answer:
(3R,4R)-4-bromohexan-3-ol
Explanation:
In this case, we have reaction called <u>halohydrin formation</u>. This is a <u>markovnikov reaction</u> with <u>anti configuration</u>. Therefore the halogen in this case "Br" and the "OH" must have <u>different configurations</u>. Additionally, in this molecule both carbons have the <u>same substitution</u>, so the "OH" can go in any carbon.
Finally, in the product we will have <u>chiral carbons</u>, so we have to find the absolute configuration for each carbon. On carbon 3 we will have an "R" configuration on carbon 4 we will have also an "R" configuration. (See figure 1)
I hope it helps!
Answer:
The net ionic equation is
H₃O⁺+NH₃ ↔ NH₄⁺+H₂O
Explanation:
To write the net ionic equation, we are required to dissociate the into ions all strong acids and strong bases
Hence, nitric acid which is a strong acid is dissociated as follows
HNO₃+H₂O → H₃O⁺ + NO₃⁻
in the above equation, the nitrate ion NO₃⁻, is a spectator ion because it is only present and does not partake in the chemical reaction so it is left out of the net ionic equation equation
Also the it is required to keep together weak bases in the solution therefore for NH₃ which is a weak base we have
NH₃ + H₃O⁺ → NH₄⁺ + H₂O
Hence, the net ionic equation becomes
H₃O⁺ (aq) + NH₃ ↔ NH₄⁺(aq) + H₂O (l)
A electrolytic* cell that electrolysis occurs
Ex. let say you wanted traces of graphene you would set up your usual electro-chemical exfoliation rig and the graphite you submerge would be your electrolytic cell.
Hopped this helped