Answer:
Wavelength of radio wave = 4.96 meter (Approx.)
Explanation:
Given:
Frequency of radio wave = 60,500,000 Hz
Velocity of radio waves = 300,000,000 m/s
Find:
Wavelength of radio wave
Computation:
Wavelength = Velocity / frequency
Wavelength of radio wave = Velocity of radio waves / Frequency of radio wave
Wavelength of radio wave = 300,000,000 / 60,500,000
Wavelength of radio wave = 4.9586
Wavelength of radio wave = 4.96 meter (Approx.)
Answer: well you get it for energy i think right
Explanation:
You get 493.41 when
you subtract 15.54 from 508.953 using the rules for significant figures.
For addition
and subtraction, look at the decimal portion (i.e., to the right of the decimal
point) of the numbers ONLY. Here is what to do:
1) Count the
number of significant figures in the decimal portion of each number in the
problem. (The digits to the left of the decimal place are not used to determine
the number of decimal places in the final answer.)
2) Add or
subtract in the normal fashion.
3) Round the
answer to the LEAST number of places in the decimal portion of any number in
the problem.
The correct answer between all the choices given is the
third choice or letter C. I am hoping that this answer has satisfied your query
and it will be able to help you in your endeavor, and if you would like, feel
free to ask another question.
Answer the point I wish you would have the greatest potential energy is when you are coming down the swing and getting ready to go up the greatest kinetic energy is whenever you’re falling back down from the height of how far you went up
Answer:
A) 37 m
Explanation:
The car is moving of uniformly accelerated motion, so the distance it covers can be calculated by using the following SUVAT equation:
(1)
where
v = 0 m/s is the final velocity of the car
u = 24 m/s is the initial velocity
a is the acceleration
d is the length of the skid
We need to find the acceleration first. We know that the force responsible for the (de)celeration is the force of friction, so:

where
m = 1000 kg is the mass of the car
is the coefficient of friction
a is the deceleration of the car
g = 9.8 m/s^2 is the acceleration due to gravity
The negative sign is due to the fact that the force of friction is against the motion of the car, so the sign of the acceleration will be negative because the car is slowing down. From this equation, we find:

And we can substitute it into eq.(1) to find d:
