1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
N76 [4]
3 years ago
12

A charge of 32.0 nC is placed in a uniform electric field that is directed vertically upward and has a magnitude of 4.30x 104 V/

m
Part A What work is done by the electric force when the charge moves a distance of 0.480 m to the right?

Part B What work is done by the electric force when the charge moves a distance of 0.660 m upward?

Part C What work is done by the electric force when the charge moves a distance of 2.50 m at an angle of 45.0° downward from the horizontal?
Physics
1 answer:
hodyreva [135]3 years ago
5 0

A) The work done by the electric field is zero

B) The work done by the electric field is 9.1\cdot 10^{-4} J

C) The work done by the electric field is -2.4\cdot 10^{-3} J

Explanation:

A)

The electric field applies a force on the charged particle: the direction of the force is the same as that of the electric field (for a positive charge).

The work done by a force is given by the equation

W=Fd cos \theta

where

F is the magnitude of the force

d is the displacement of the particle

\theta is the angle between the direction of the force and the direction of the displacement

In this problem, we have:

  • The force is directed vertically upward (because the field is directed vertically upward)
  • The charge moves to the right, so its displacement is to the right

This means that force and displacement are perpendicular to each other, so

\theta=90^{\circ}

and cos 90^{\circ}=0: therefore, the work done on the charge by the electric field is zero.

B)

In this case, the charge move upward (same direction as the electric field), so

\theta=0^{\circ}

and

cos 0^{\circ}=1

Therefore, the work done by the electric force is

W=Fd

and we have:

F=qE is the magnitude of the electric force. Since

E=4.30\cdot 10^4 V/m is the magnitude of the electric field

q=32.0 nC = 32.0\cdot 10^{-9}C is the charge

The electric force is

F=(32.0\cdot 10^{-9})(4.30\cdot 10^4)=1.38\cdot 10^{-3} N

The displacement of the particle is

d = 0.660 m

Therefore, the work done is

W=Fd=(1.38\cdot 10^{-3})(0.660)=9.1\cdot 10^{-4} J

C)

In this case, the angle between the direction of the field (upward) and the displacement (45.0° downward from the horizontal) is

\theta=90^{\circ}+45^{\circ}=135^{\circ}

Moreover, we have:

F=1.38\cdot 10^{-3} N (electric force calculated in part b)

While the displacement of the charge is

d = 2.50 m

Therefore, we can now calculate the work done by the electric force:

W=Fdcos \theta = (1.38\cdot 10^{-3})(2.50)(cos 135.0^{\circ})=-2.4\cdot 10^{-3} J

And the work is negative because the electric force is opposite direction to the displacement of the charge.

Learn more about work and electric force:

brainly.com/question/6763771

brainly.com/question/6443626

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

You might be interested in
A positive charge is moved from point A to point B along an equipotential surface. How much work is performed or required in mov
Nitella [24]

Answer:

No work is performed or required in moving the positive charge from point A to point B.

Explanation:

Lets take

Q= Positive charge which move from  point A to point B along

Voltage difference,ΔV =V₁ - V₂  

The work done

W = Q . ΔV

Given that  charge is moved from point A to point B along an equipotential surface.It means that voltage  difference is zero.

ΔV = 0

So

W = Q . ΔV

W = Q x 0

W= 0 J

So work is zero.

5 0
3 years ago
Balance the following equations: CUCO3+H2SO4- CUSO4+H2O+CO2​
Setler79 [48]

Answer:

It is already balanced

Explanation:

It is already balanced

6 0
3 years ago
A motorcycle, which has an initial linear speed of 9.7 m/s, decelerates to a speed of 4.0 m/s in 4.4 s. Each wheel has a radius
Morgarella [4.7K]

Hi there!

We can begin by solving for the linear acceleration as we are given sufficient values to do so.

We can use the following equation:

vf = vi + at

Plug in given values:

4 = 9.7 + 4.4a

Solve for a:

a = -1.295 m/s²

We can use the following equation to convert from linear to angular acceleration:

a = αr

a/r = α

Thus:

-1.295/0.61 = -2.124 rad/sec² ⇒ 2.124 rad/sec² since counterclockwise is positive.

Now, we can find the angular displacement using the following:

θ = ωit + 1/2αt²

We must convert the initial velocity of the tire (9.7 m/s) to angular velocity:

v = ωr

v/r = ω

9.7/0.61 = 15.9 rad/sec

Plug into the equation:

θ = 15.9(4.4) + 1/2(2.124)(4.4²) = 20.56 rad

6 0
3 years ago
Use the dot product to find the magnitude of u if u = 6i - 3j
LuckyWell [14K]
Vector u :
u = 6 i - 3 j
The magnitude of vector u :
| u | = \sqrt{6 ^{2}+(-3) ^{2}  } = \sqrt{36+9}= \\  \sqrt{45}= \sqrt{9*5}=3  \sqrt{5}
Answer:
The magnitude of vector u is 3√5. 
3 0
3 years ago
Which situation is an example of transferring heat by means of convection?
Hoochie [10]
It would be B, the weather patterns outside.
3 0
3 years ago
Other questions:
  • Does the u declined adverb express time, place, or manner?<br> The squirll spotted us and ran away.
    13·1 answer
  • the car starts from a stop to travel 1100 meters in 14 seconds. it is clocked at 65 m/s at point k. find its average speed and a
    14·1 answer
  • Question 16 1 pts Jessie feels pressured by his parents to get a job. This is an example of the law of?
    11·1 answer
  • Most of the universe is believed to be ______
    7·2 answers
  • The unit for energy is the joule (j). If the energy content of an object is 1,000 J, but then later is found to be 900 J, what i
    9·1 answer
  • In preparing to shoot an arrow, an archer pulls a bow string back 0.424 m by exerting a force that increases uniformly from 0 to
    15·1 answer
  • When unbalanced forces act on an object, __________________. the object accelerates friction becomes greater than the net force
    14·1 answer
  • How are energy and distance up the ramp related
    15·1 answer
  • A 3.47-m rope is pulled tight with a tension of 106 N. A wave crest generated at one end of the rope takes 0.472 s to propagate
    5·1 answer
  • Four importance of soil water
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!