1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
N76 [4]
3 years ago
12

A charge of 32.0 nC is placed in a uniform electric field that is directed vertically upward and has a magnitude of 4.30x 104 V/

m
Part A What work is done by the electric force when the charge moves a distance of 0.480 m to the right?

Part B What work is done by the electric force when the charge moves a distance of 0.660 m upward?

Part C What work is done by the electric force when the charge moves a distance of 2.50 m at an angle of 45.0° downward from the horizontal?
Physics
1 answer:
hodyreva [135]3 years ago
5 0

A) The work done by the electric field is zero

B) The work done by the electric field is 9.1\cdot 10^{-4} J

C) The work done by the electric field is -2.4\cdot 10^{-3} J

Explanation:

A)

The electric field applies a force on the charged particle: the direction of the force is the same as that of the electric field (for a positive charge).

The work done by a force is given by the equation

W=Fd cos \theta

where

F is the magnitude of the force

d is the displacement of the particle

\theta is the angle between the direction of the force and the direction of the displacement

In this problem, we have:

  • The force is directed vertically upward (because the field is directed vertically upward)
  • The charge moves to the right, so its displacement is to the right

This means that force and displacement are perpendicular to each other, so

\theta=90^{\circ}

and cos 90^{\circ}=0: therefore, the work done on the charge by the electric field is zero.

B)

In this case, the charge move upward (same direction as the electric field), so

\theta=0^{\circ}

and

cos 0^{\circ}=1

Therefore, the work done by the electric force is

W=Fd

and we have:

F=qE is the magnitude of the electric force. Since

E=4.30\cdot 10^4 V/m is the magnitude of the electric field

q=32.0 nC = 32.0\cdot 10^{-9}C is the charge

The electric force is

F=(32.0\cdot 10^{-9})(4.30\cdot 10^4)=1.38\cdot 10^{-3} N

The displacement of the particle is

d = 0.660 m

Therefore, the work done is

W=Fd=(1.38\cdot 10^{-3})(0.660)=9.1\cdot 10^{-4} J

C)

In this case, the angle between the direction of the field (upward) and the displacement (45.0° downward from the horizontal) is

\theta=90^{\circ}+45^{\circ}=135^{\circ}

Moreover, we have:

F=1.38\cdot 10^{-3} N (electric force calculated in part b)

While the displacement of the charge is

d = 2.50 m

Therefore, we can now calculate the work done by the electric force:

W=Fdcos \theta = (1.38\cdot 10^{-3})(2.50)(cos 135.0^{\circ})=-2.4\cdot 10^{-3} J

And the work is negative because the electric force is opposite direction to the displacement of the charge.

Learn more about work and electric force:

brainly.com/question/6763771

brainly.com/question/6443626

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

You might be interested in
A quarterback throws a football 40 yards in 4 seconds.what is the average speed the football
lions [1.4K]
The answer is 10 yards per second

8 0
3 years ago
Read 2 more answers
How long would a circuit be connected to produce a current of 0.65 A with a charge of 380 C?
natka813 [3]

30 minutes I am not sure about that

5 0
2 years ago
A wave transfers:<br> Water<br> particles<br> energy<br> matter
SashulF [63]

Answer:

Particles in a water wave exchange kinetic energy for potential energy. When particles in water become part of a wave, they start to move up or down. This means that kinetic energy (energy of movement) has been transferred to them

Explanation:

hope this helps u ....

<em>pls mark this as the brainliest...</em>

6 0
3 years ago
Is ice cream a solid -or is it actually a solid?
blondinia [14]
It is a solid when is frozen and a liquid when it melts
6 0
3 years ago
Read 2 more answers
What figure represents a longitudinal figure
OlgaM077 [116]

Answer:

The wavelength can always be determined by measuring the distance between any two corresponding points on adjacent waves. In the case of a longitudinal wave, a wavelength measurement is made by measuring the distance from a compression to the next compression or from a rarefaction to the next rarefaction.

Explanation:

3 0
3 years ago
Other questions:
  • The term pressure most nearly refers to which of the following?
    13·2 answers
  • Jordan wants to know the difference between using a 60-W and 100-W lightbulb in her lamp. She calculates the energy it would tak
    6·1 answer
  • A force of 6 N is used to open a door, wherein the distance of the force to the axis of rotation is 80 cm. If the angular accele
    14·1 answer
  • The absorption line spectrum shows what we see when we look at a hot light source (such as a star or light bulb) directly behind
    11·1 answer
  • The diagram shows steps and structures involved in protein production. The arrow labeled X is pointing to
    5·2 answers
  • What is hydrology?
    15·1 answer
  • Un muelle se alarga 20 cm cuando ejercemos sobre él una fuerza de 24 N. Calcula:El valor de la constante elástica del muelle
    12·1 answer
  • a rock of mass of 540 g in the air is found to have an apparent mass of 342 g when submerged in water (a) calculate the weight o
    8·1 answer
  • An airplane travels 1200 km in 90 minutes. What is the average speed in m/s for this trip?
    11·1 answer
  • T or F A red-hot object is hotter than one that is while-hot?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!