RbOH is a strong base that dissociates completely and HCl is a strong acid that too dissociates completely. the complete reaction between the acid and base is;
RbOH + HCl ---> RbCl + H₂O
stoichiometry of acid to base is 1:1
At neutralisation point
H⁺ mol = OH⁻ mol
mol = molarity x volume
if Ma - molarity of acid and Va - volume of acid reacted
Mb - molarity of base and Vb - volume of base reacted
Ma x Va = Mb x Vb
0.5 M x 52.8 mL = Mb x 60.0 mL
Mb = 0.44 M
molarity of base - 0.44 M
<span>For this reaction, oxidation number of Carbon in
CO would be +2 while oxidation number of carbon in CO2 would be +4 and so this
means that carbon has oxidized. Oxidation number of nitrogen in NO is +2. While
oxidation number of nitrogen in N2 is 0 so this means that nitrogen had reduced.
The reducing agent is the one which provides electrons by oxidizing itself so
in this case; CO is the reducing agent while the C in CO oxidized to produce
electrons. </span><span>I
am hoping that this answer has satisfied your query about and it will be able
to help you, and if you’d like, feel free to ask another question.</span>
Answer:
what are the answers?
Explanation:
Probably going to be c for this, until the answers you choose are shown. very very sorry :c
Answer:
13 mol NO
Explanation:
Step 1: Write the balanced equation
4 NH₃(g) + 5 O₂(g) ⇒ 4 NO(g) + 6 H₂O(g)
Step 2: Establish the appropriate molar ratio
According to the balanced equation, the molar ratio of O₂ to NO is 5:4.
Step 3: Calculate the number of moles of O₂ needed to produce 16 moles of NO
We will use the previously established molar ratio.
16 mol O₂ × 4 mol NO/5 mol O₂ = 13 mol NO