Answer:
ΔT = Tfinal − Tinitial = 150°C − 35.0°C = 125°C
given the specific heat of iron as 0.108 cal/g·°C
heat=(100.0 g)(0.108 cal /g· °C )(125°C) =
100x 0.108x125= 1350 cal
Answer:
Describe what is happening within the system when it is at equilibrium in terms of concentrations, reactions that occur, and reaction rates.
Explanation:
The chemical equilibrium state is the state where the rate of forward reaction becomes equal to the rate of backward reaction.
At this stage the change in concentration of reactants becomes equal to the change in concentration of products.
The reaction will never cease.
That is the reason chemical equilibrium is called dynamic equilibrium.
So, forward and backward reactions will be taking place continuously at equal rates.
It would typically be around 5000 seconds(83.33) minutes for the water to freeze.
<u>Answer:</u> The
for the reaction is -1052.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)

(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times \Delta H_1]+[1\times (-\Delta H_2)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%5CDelta%20H_1%5D%2B%5B1%5Ctimes%20%28-%5CDelta%20H_2%29%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1052.8 kJ.