Answer:
50
Explanation:
We will need a balanced equation with masses, moles, and molar masses of the compounds involved.
1. Gather all the information in one place with molar masses above the formulas and masses below them.
Mᵣ: 30.01 32.00 46.01
2NO + O₂ ⟶ 2NO₂
Mass/g: 80.00 16.00
2. Calculate the moles of each reactant

3. Calculate the moles of NO₂ we can obtain from each reactant
From NO:
The molar ratio is 2 mol NO₂:2 mol NO

From O₂:
The molar ratio is 2 mol NO₂:1 mol O₂

4. Identify the limiting and excess reactants
The limiting reactant is O₂ because it gives the smaller amount of NO₂.
The excess reactant is NO.
5. Mass of excess reactant
(a) Moles of NO reacted
The molar ratio is 2 mol NO:1 mol O₂

(b) Mass of NO reacted

(c) Mass of NO remaining
Mass remaining = original mass – mass reacted = (80.00 - 30.01) g = 50 g NO
Answer:
893 moles
Explanation:
An ideal gas at STP occupies 22.4 liters. Calculating Oxygen as if it were an ideal gas there are . 893 moles of Oxygen in 20.0 liters.
It will take 15 s to travel 6 cm
<h3>Further explanation</h3>
Given
distance versus time graph
Required
time travel
Solution
Caterpillar motion is a straight motion with a constant speed, so that the graph between distance and time forms a diagonal line
If we look at the graph, we can determine the time taken when the distance reaches 6 cm (y axis) by drawing a line to the diagonal line and cutting the x-axis as time, and we get 15 s
Or we can also use the formula for motion at constant speed:
d = v x t
With v at point 2,5 of 2/5 m / s, so the time taken:

Answer:
The correct answer is m= mol solute kg soivent
Explanation:
Molality is a measure of concentration, which indicates the moles of solute (in this case sodium hydroxide) in 1kg of solvent .
In this case:
0,800 kg water-----0,400 mol NaOH
1 ,000 kg water ---x=(1 ,000 kg water x 0,400 mol NaOH)/0,800 kg water
x=0,5 mol NaOH---> <em>The solution is 0,5 molal (0,5 m)</em>