Answer: atoms do have 3 subatomic particles but the nucleus is positive and the nucleus consists of protons and neutrons. Its positive because neutrons have no charge and protons have a positive charge. There are only electrons on the shells so no neutrons or protons on the shells
Explanation:
The amount, in mL, of the concentrated acid required, would be 1.1875 mL
<h3>Dilution</h3>
From the dilution equation:
m1v1=m2v2 where m1 and m2 = molarity before and after dilution, and v1 and v2 = volume before and after dilution.
m2 = 0.285M, m1 = 12.0M v2 = 50.0 mL
v1 = m2v2/m1 = 0.285x50/12 = 1.1875 mL
Thus, 1.1875 mL of the acid would be taken and diluted with water up to the 50 mL mark.
More on dilution can be found here: brainly.com/question/13949222
#SPJ1
The question is asking to choose among the following choices is cannot be considered as a single phase and base on my further research and understanding about the sad topic, I would say that the answer would be <span>d) a heterogeneous mixture. I hope you are satisfied with my answer </span>
As you go down a group on the periodic table, atomic radii tend to increase because elements with larger atomic numbers have more occupied electron levels which take up more space surrounding the nucleus.
I hope this helps.
Answer:
8.625 grams of a 150 g sample of Thorium-234 would be left after 120.5 days
Explanation:
The nuclear half life represents the time taken for the initial amount of sample to reduce into half of its mass.
We have given that the half life of thorium-234 is 24.1 days. Then it takes 24.1 days for a Thorium-234 sample to reduced to half of its initial amount.
Initial amount of Thorium-234 available as per the question is 150 grams
So now we start with 150 grams of Thorium-234





So after 120.5 days the amount of sample that remains is 8.625g
In simpler way , we can use the below formula to find the sample left

Where
is the initial sample amount
n = the number of half-lives that pass in a given period of time.