A. is the answer
if u have any doubts ask me
please mark as brainliest
Answer:
P' = 41.4 mmHg → Vapor pressure of solution
Explanation:
ΔP = P° . Xm
ΔP = Vapor pressure of pure solvent (P°) - Vapor pressure of solution (P')
Xm = Mole fraction for solute (Moles of solvent /Total moles)
Firstly we determine the mole fraction of solute.
Moles of solute → Mass . 1 mol / molar mass
20.2 g . 1 mol / 342 g = 0.0590 mol
Moles of solvent → Mass . 1mol / molar mass
60.5 g . 1 mol/ 18 g = 3.36 mol
Total moles = 3.36 mol + 0.0590 mol = 3.419 moles
Xm = 0.0590 mol / 3.419 moles → 0.0172
Let's replace the data in the formula
42.2 mmHg - P' = 42.2 mmHg . 0.0172
P' = - (42.2 mmHg . 0.0172 - 42.2 mmHg)
P' = 41.4 mmHg
Whereas semidiurnal tides are observed at the equator at all times, most locations north or south of the equator experiencetwo unequal high tides and twounequal low tides per tidal day; this is called a mixed tide and the difference in height between successive high (or low) tides iscalled the diurnal inequality.
Answer:
See explanation below.
Explanation:
In the equation ∆G = –nFE, E is the electromotive force ( cell potential ) in Volts.
Now in turn a Volt is defined as the potential difference that will impart one joule of energy per coulomb of charge that moves through two points.
V = J/C where J is Joules and C is coulombs of charge
Therefore in terms of units the equation will give us units of Joules:
[ mol] x [C/mol] x [J/C] = [J]