Answer:
the work required to turn the crank at the given revolutions is 8,483.4 J
Explanation:
Given;
torque required to turn the crank, T = 4.50 N.m
number of revolutions, = 300 turns
The work required to turn the crank is given as;
W = 2πT
W = 2 x 3.142 x 4.5
W = 28.278 J
1 revolution = 28.278 J
300 revlotions = ?
= 300 x 28.278 J
= 8,483.4 J
Therefore, the work required to turn the crank at the given revolutions is 8,483.4 J
No. You cannot rule out the battery even after the open circuit voltage measurement. The open-circuit voltage may not have changed but the battery's internal resistance may have greatly increased.
Answer:
30N*s
Explanation:
Given the following data;
Force = 10N
Time = 3 seconds
To find the impulse;
Impulse = force * time
Substituting into the equation, we have;
Impulse = 10 * 3
Impulse = 30Ns
The correct answer is:
<span>B) orange, yellow, green, blue
the energy of the photons of light is directly proportional to the frequency of the light. This means that the lower the frequency, the lower the energy, and the higher the frequency, the greater the energy.
Therefore, the order in increasing energy is exactly the same as the order in increasing frequency, which is:
</span><span>
orange, yellow, green, blue </span>
Answer:
In a series circuit, the same amount of current flows through all the components placed in it. On the other hand, in parallel circuits, the components are placed in parallel with each other due to which the circuit splits the current flow.