1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lina2011 [118]
2 years ago
14

On average, both arms and hands together account for 13% of a person's mass, while the head is 7.0% and the trunk and legs accou

nt for 80%. We can model a spinning skater with her arms outstretched as a vertical cylinder (head, trunk, and legs) with two solid uniform rods (arms and hands) extended horizontally. Suppose a 74.0 kg skater is 1.80 m tall, has arms that are each 70.0 cm long (including the hands), and a trunk that can be modeled as being 35.0 cm in diameter. If the skater is initially spinning at 68.0 rpm with her arms outstretched, what will her angular velocity 2 be (in rpm ) after she pulls in her arms and they are at her sides parallel to her trunk? Assume that friction between the skater and the ice is negligble.

Physics
1 answer:
Feliz [49]2 years ago
3 0

Answer:

Angular velocity, N_f = 242.36 rpm

Explanation:

The mass of the skater, M = 74.0 kg

Mass of each arm, m_{a} = 0.13 * \frac{M}{2} ( since it is 13% of the whole body and each arm is considered)

m_{a} = 0.13 * 37\\m_a = 4.81 kg

Mass of the trunk, m_{t} = M - 2m_{a}

m_t = 74 - 2(4.81)\\m_{t} = 64.38 kg

Total moment of Inertia = (Moment of inertia of the arms) + (Moment of inertia of the trunks)

(I_{T} )_i = 2(\frac{m_{a}L^2 }{12} + m_a(0.5L + R)^2) + 0.5 m_t R^2

(I_{T} )_i = 2(\frac{4.81 * 0.7^2 }{12} + 4.81(0.5*0.7 + 0.175)^2) + 0.5 *64.38* 0.175^2\\(I_{T} )_i = 3.052 + 0.986\\(I_{T} )_i = 4.038 kgm^2

The final moment of inertia of the person:

(I_{T} )_f = \frac{1}{2} MR^{2} \\(I_{T} )_f = \frac{1}{2} * 74*0.175^{2}\\(I_{T} )_f = 1.133 kg.m^2

According to the principle of conservation of angular momentum:

(I_{T} )_i w_{i} = (I_{T} )_f w_{f}\\w_{i} = 68 rpm = (2\pi * 68)/60 = 7.12 rad/s\\4.038 * 7.12 =1.133* w_{f}\\w_{f} = 25.38 rad/s\\w_{f} = \frac{2\pi N_f}{60} \\25.38 = \frac{2\pi N_f}{60}\\N_f = (25.38 * 60)/2\pi \\N_f = 242.36 rpm

You might be interested in
A 1.0-kg block moving to the right at speed 3.0 m/s collides with an identical block also moving to the right at a speed 1.0 m/s
____ [38]

Answer:

Speed of both blocks after collision is 2 m/s

Explanation:

It is given that,

Mass of both blocks, m₁ = m₂ = 1 kg

Velocity of first block, u₁ = 3 m/s

Velocity of other block, u₂ = 1 m/s

Since, both blocks stick after collision. So, it is a case of inelastic collision. The momentum remains conserved while the kinetic energy energy gets reduced after the collision. Let v is the common velocity of both blocks. Using the conservation of momentum as :

m_1u_1+m_2u_2=(m_1+m_2)v

v=\dfrac{m_1u_1+m_2u_2}{(m_1+m_2)}

v=\dfrac{1\ kg\times 3\ m/s+1\ kg\times 1\ m/s}{2\ kg}

v = 2 m/s

Hence, their speed after collision is 2 m/s.

7 0
3 years ago
To test the performance of its tires, a car
velikii [3]

<u>Answer</u>:

The coefficient of  static friction between the tires and the road is 1.987

<u>Explanation</u>:

<u>Given</u>:

Radius of the track, r =  516 m

Tangential Acceleration a_r=  3.89 m/s^2

Speed,v =  32.8 m/s

<u>To Find:</u>

The coefficient of  static friction between the tires and the road = ?

<u>Solution</u>:

The radial Acceleration is given by,

a_{R = \frac{v^2}{r}

a_{R = \frac{(32.8)^2}{516}

a_{R = \frac{(1075.84)}{516}

a_{R = 2.085 m/s^2

Now the total acceleration is

\text{ total acceleration} = \sqrt{\text{(tangential acceleration)}^2 +{\text{(Radial acceleration)}^2

=>= \sqrt{ (a_r)^2+(a_R)^2}

=>\sqrt{ (3.89 )^2+( 2.085)^2}

=>\sqrt{ (15.1321)+(4.347)^2}

=>19.4791 m/s^2

The frictional force on the car will be f = ma------------(1)

And the force due to gravity is W = mg--------------------(2)

Now the coefficient of  static friction is

\mu =\frac{f}{W}

From (1) and (2)

\mu =\frac{ma}{mg}

\mu =\frac{a}{g}

Substituting the values, we get

\mu =\frac{19.4791}{9.8}

\mu =1.987

8 0
3 years ago
____________ is an out made when a base runner, forced to run because another teammate must run to the base being occupied, cann
maxonik [38]
If I knew the answer I would help but I don’t know sorry
5 0
2 years ago
One way to improve food security is to avoid food spoilage. Identify the correct ways that Devon reduced food spoilage in the pa
quester [9]

The correct answer would be "He brought one serving to his neighbor's house, and stored the other two servings in the refrigerator. Devon ate one more serving or spaghetti the following day."

3 0
3 years ago
Read 2 more answers
A cylinder with a movable piston contains 2.00 g of helium, He, at room temperature. More helium was added to the cylinder and t
Katen [24]

Answer:

0.358g

Explanation:

Density of Helium = 0.179g/L

ρ=m/v

m=ρv

when the volume was 2L

m1= 0.179*2

m1=0.358g

when the volume increased to 4L

m2= 0.179*4

m2=0.716g

gram of helium added = 0.716g-0.358g

=0.358g

5 0
3 years ago
Other questions:
  • In the first-order spectrum, maxima for two different wavelengths are separated on the screen by 3.40 mm . what is the differenc
    11·1 answer
  • Particle a has twice the charge of nearby particle
    12·1 answer
  • About 800 billion years ago there was series of ice ages , why ?????
    14·1 answer
  • How do the two reflex arcs differ in complexity
    12·1 answer
  • A projectile is launched horizontally at off a 20m high position. It goes 60m
    12·1 answer
  • Planet C has a tilt of zero degrees. What seasonal changes would be expected on this planet?
    8·2 answers
  • For an object to appear red, what must happen?
    12·1 answer
  • Considera que las masas de los cuerpos son m1 y m2, y sus velocidades antes del choque v1 y v2. Utiliza la ley de conservación d
    12·1 answer
  • How might the temperatures on Mercury be different if it had the same mass as Earth?
    7·1 answer
  • What is the smallest particle in the Universe?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!