Answer:
The acceleration of a point on the wheel is 11.43 m/s² acting radially inward.
Explanation:
The centripetal acceleration acts on a body when it is performing a circular motion.
Here, a point on the bicycle is performing circular motion as the rotation of the wheel produces a circular motion.
The centripetal acceleration of a point moving with a velocity
and at a distance of
from the axis of rotation is given as:

Here, 
∴ 
Therefore, the acceleration of a point on the wheel is 11.43 m/s² acting radially inward.
Answer:
h
Explanation:
Coulomb's law, or Coulomb's inverse-square law, is an experimental law[1] of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force.[2] The law was first discovered in 1785 by French physicist Charles-Augustin de Coulomb, hence the name. Coulomb's law was essential to the development of the theory of electromagnetism, maybe even its starting point,[1] as it made it possible to discuss the quantity of electric charge in a meaningful way.[3]
The law states that the magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them,[4]
{\displaystyle F=k_{\text{e}}{\frac {q_{1}q_{2}}{r^{2}}}}{\displaystyle F=k_{\text{e}}{\frac {q_{1}q_{2}}{r^{2}}}}
Here, ke is Coulomb's constant (ke ≈ 8.988×109 N⋅m2⋅C−2),[1] q1 and q2 are the signed magnitudes of the charges, and the scalar r is the distance between the charges.
The force is along the straight line joining the two charges. If the charges have the same sign, the electrostatic force between them is repulsive; if they have different signs, the force between them is attractive.
Being an inverse-square law, the law is analogous to Isaac Newton's inverse-square law of universal gravitation, but gravitational forces are always attractive, while electrostatic forces can be attractive or repulsive.[2] Coulomb's law can be used to derive Gauss's law, and vice versa. In the case of a single stationary point charge, the two laws are equivalent, expressing the same physical law in different ways.[5] The law has been tested extensively, and observations have upheld the law on the scale from 10−16 m to 108 m.[5]
Answer:
462000J
Explanation:
Quantity of heat= mass x specific heat capacity of iron x change in temp
specific heat capacity of iron is 462J/Kg/K
change in temp = 250-50= 200°C
200°C is equivalent to 200K since 1°C is 1K
Q= mct
= 5x462x200
= 462000J
Answer:
Water expands when it freezes making it less dense than the water from which it freezes. In fact, its volume is a little over 9% greater (or density ca. 9% lower) than in the liquid state. For this reason, ice floats on the water (like an ice cube in a glass of water).
Explanation:
Answer:
488.6KN
Explanation:
Hello!
the first step to solve this problem we must find the pressure exerted at the bottom of the tank (P) which is the sum of the external air pressure (P1 = 92kPa), the pressure inside the tank (P2 = 100kPa) and the pressure due to the weight of the water (P3), taking into account the above we have the following equation
P=P1+P2+P3
to find the pressure at the bottom of the tank due to the weight of the water we use the following equation

where
α=density=1 g/cm^3=1000kg/M^3
H=height=14.1m
g=gravity=3.71m/s^2
solving
P3=(1000)(14.1)(3.71)=52311Pa=52.3kPa
P=P1+P2+P3
P=100kPa+92kPa+52.3kPa=244.3kPa
finally to solve the problem we remember that the pressure is the force exerted on the area
