Answer:
V₀y = 0 m/s
t = 2.47 s
V₀ₓ = 61.86 m/s
Vₓ = 61.86 m/s
Explanation:
Since, the ball is hit horizontally, there is no vertical component of velocity at initial point. So, the initial vertical velocity (V₀y) will beL
<u>V₀y = 0 m/s</u>
For the initial vertical velocity of golf ball we consider the vertical motion and apply 2nd equation of motion:
Y = V₀y*t + (0.5)gt²
where,
Y = Height = 30 m
g = 9.8 m/s²
t = time to hit the ground = ?
Therefore,
30 m = (0 m/s)(t) + (0.5)(9.8 m/s²)t²
t² = 30 m/4.9 m/s²
t = √6.122 s²
<u>t = 2.47 s</u>
For initial vertical velocity we analyze the horizontal motion of the ball. We neglect the frictional effects in horizontal motion thus the speed remains uniform. Hence,
V₀ₓ = Xt
where,
V₀ₓ = Initial vertical Velocity = ?
X = Horizontal Distance = 25 m
Therefore,
V₀ₓ = (25 m)(2.47 s)
<u>V₀ₓ = 61.86 m/s</u>
<u></u>
Due, to uniform motion in horizontal direction:
Final Vertical Velocity = Vₓ = V₀ₓ
Vₓ = 61.86 m/s
You can use Newton's Second Law which states:

Plug in given information:

This is closest to option
b which is your answer.
It is because the equator is closer to the sun and because the sun's rays hit the surface of the Earth at a higher angle at the equator. The poles are colder because they don't get direct sunlight. The sun is always low on the horizon.
Answer:
v = 0.059 m/s
Explanation:
To find the final speed of Olaf and the ball you use the conservation momentum law. The momentum of Olaf and the ball before catches the ball is the same of the momentum of Olaf and the ball after. Then, you have:
(1)
m: mass of the ball = 0.400kg
M: mass of Olaf = 75.0 kg
v1i: initial velocity of the ball = 11.3m/s
v2i: initial velocity of Olaf = 0m/s
v: final velocity of Olaf and the ball
You solve the equation (1) for v and replace the values of all variables:

Hence, after Olaf catches the ball, the velocity of Olaf and the ball is 0.059m/s
Answer:
The answer is for your question is :
Explanation:
True