1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna007 [38]
3 years ago
12

A hollow sphere of radius 0.200 m, with rotational inertia I = 0.0484 kg·m2 about a line through its center of mass, rolls witho

ut slipping up a surface inclined at 27.1° to the horizontal. At a certain initial position, the sphere's total kinetic energy is 20.0 J. (a) How much of this initial kinetic energy is rotational? (b) What is the speed of the center of mass of the sphere at the initial position? When the sphere has moved 0.900 m up the incline from its initial position, what are (c) its total kinetic energy and (d) the speed of its center of mass?
Physics
1 answer:
d1i1m1o1n [39]3 years ago
8 0

Answer:

Part a)

KE_r = 8 J

Part b)

v = 3.64 m/s

Part c)

KE_f = 12.7 J

Part d)

v = 2.9 m/s

Explanation:

As we know that moment of inertia of hollow sphere is given as

I = \frac{2}{3}mR^2

here we know that

I = 0.0484 kg m^2

R = 0.200 m

now we have

0.0484 = \frac{2}{3}m(0.200)^2

m = 1.815 kg

now we know that total Kinetic energy is given as

KE = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2

KE = \frac{1}{2}mv^2 + \frac{1}{2}I(\frac{v}{R})^2

20 = \frac{1}{2}(1.815)v^2 + \frac{1}{2}(0.0484)(\frac{v}{0.200})^2

20 = 1.5125 v^2

v = 3.64 m/s

Part a)

Now initial rotational kinetic energy is given as

KE_r = \frac{1}{2}I(\frac{v}{R})^2

KE_r = \frac{1}{2}(0.0484)(\frac{3.64}{0.200})^2

KE_r = 8 J

Part b)

speed of the sphere is given as

v = 3.64 m/s

Part c)

By energy conservation of the rolling sphere we can say

mgh = (KE_i) - KE_f

1.815(9.8)(0.900sin27.1) = 20- KE_f

7.30 = 20 - KE_f

KE_f = 12.7 J

Part d)

Now we know that

\frac{1}{2}mv^2 + \frac{1}{2}I(\frac{v}{r})^2 = 12.7

\frac{1}{2}(1.815) v^2 + \frac{1}{2}(0.0484)(\frac{v}{0.200})^2 = 12.7

1.5125 v^2 = 12.7

v = 2.9 m/s

You might be interested in
Traveling with an initial speed of a car accelerates at along a straight road. How long will it take to reach a speed of Also, t
makvit [3.9K]

Answer:

A) 30 s, 792 m

B) 10.28 s, 4108.2 m = 4.11 km

Explanation:

A) Traveling with an initial speed of 70 km/h, a car accelerates at 6000km/h^2 along a straight road. How long will it take to reach a speed of 120 km/h? Also, through what distance does the car travel during this time?

Using the equations of motion.

v = u + at

v = final velocity = 120 km/h

u = initial velocity = 70 km/h

a = acceleration = 6000 km/h²

t = ?

120 = 70 + 6000t

6000t = 50

t = (50/6000) = 0.0083333333 hours = 30 seconds.

Using the equations of motion further,

v² = u² + 2ax

where x = horizontal distance covered by the car during this time

120² = 70² + 2×6000×x

12000x = 120² - 70² = 9500

x = (9500/12000) = 0.79167 km = 791.67 m = 792 m

B) At t = 0 bullet A is fired vertically with an initial (muzzle) velocity of 450 m/s. When t = 3 s, bullet B is fired upward with a muzzle velocity of 600 m/s. Determine the time t, after A is fired, as to when bullet B passes bullet A. At what altitude does this occur?

Bullet A is fired upwards with velocity 450 m/s

Bullet B is fired upwards with velocity 600 m/s too

Using the equations of motion, we can obtain a relation for when vertical distance covered by the bullets and time since they were fired.

y = ut + ½at²

For the bullet A

u = initial velocity = 450 m/s

a = acceleration due to gravity = -9.8 m/s²

y = 450t - 4.9t² (eqn 1)

For the bullet B, fired 3 seconds later,

u = initial velocity = 600 m/s

a = acceleration due to gravity = -9.8 m/s²

t = T

y = 600T - 4.9T²

At the point where the two bullets pass each other, the vertical heights covered are equal

y = y

450t - 4.9t² = 600T - 4.9T²

But, note that, since T starts reading, 3 seconds after t started reading,

T = (t - 3) s

450t - 4.9t² = 600T - 4.9T²

450t - 4.9t² = 600(t-3) - 4.9(t-3)²

450t - 4.9t² = 600t - 1800 - 4.9(t² - 6t + 9)

450t - 4.9t² = 600t - 1800 - 4.9t² + 29.4t - 44.1

600t - 1800 - 4.9t² + 29.4t - 44.1 - 450t + 4.9t² = 0

179.4t - 1844.1 = 0

t = (1844.1/179.4) = 10.28 s

Putting this t into the expression for either of the two y's, we obtain the altitude at which this occurs.

y = 450t - 4.9t²

= (450×10.28) - (4.9×10.28×10.28)

= 4,108.2 m = 4.11 km

Hope this Helps!!!!

6 0
3 years ago
Astronomers discover an exoplanet, a planet obriting a star other than the Sun, that has an orbital period of 3.27 Earth years i
Naddik [55]

Answer:

  r = 3.787 10¹¹ m

Explanation:

We can solve this exercise using Newton's second law, where force is the force of universal attraction and centripetal acceleration

    F = ma

    G m M / r² = m a

The centripetal acceleration is given by

    a = v² / r

For the case of an orbit the speed circulates (velocity module is constant), let's use the relationship

    v = d / t

The distance traveled Esla orbits, in a circle the distance is

    d = 2 π r

Time in time to complete the orbit, called period

     v = 2π r / T

Let's replace

    G m M / r² = m a

    G M / r² = (2π r / T)² / r

    G M / r² = 4π² r / T²

    G M T² = 4π² r3

     r = ∛ (G M T² / 4π²)

Let's reduce the magnitudes to the SI system

     T = 3.27 and (365 d / 1 y) (24 h / 1 day) (3600s / 1h)

     T = 1.03 10⁸ s

Let's calculate

      r = ∛[6.67 10⁻¹¹ 3.03 10³⁰ (1.03 10⁸) 2) / 4π²2]

      r = ∛ (21.44 10³⁵ / 39.478)

      r = ∛(0.0543087 10 36)

      r = 0.3787 10¹² m

      r = 3.787 10¹¹ m

7 0
3 years ago
The electric potential in a region of space is \[V=350/\sqrt{x ^{2}+y ^{2}}\] where x and y are in meters. what is the strength
VARVARA [1.3K]
So the given value or the formula in getting the electric potential region of space is V=350/sqrt of x^2+y^2. So the given data is x and y is equals to 2.6 and 2.8. So in my calculation i came up with an answer of 91.6
8 0
3 years ago
Busco<br>n o<br><br><br><br><br>Vi<br><br><br><br><br>oookuflufurlgxbmhxmdhkhdkydkdul​
stira [4]

Answer:

Explanation:

Need help? With something

4 0
3 years ago
Which of the following is a measurement of acceleration?
Tems11 [23]
B is the correct answer because an object moving ten north m/s will turn into 15m/s which as you can tell is accelerating.
6 0
3 years ago
Other questions:
  • If the frequencies of two component waves are 24 Hz and 20 Hz, they should produce _______ beats per second.
    10·2 answers
  • Bending of light as it travels through water droplets will result in what
    9·1 answer
  • According to Newton's first law, if an object is slowing down, what must be happening?A.No forces are acting on it.
    8·2 answers
  • Phenotype describes
    14·1 answer
  • After your school's team wins the regional championship, students go to the dorm roof and start setting off fireworks rockets. T
    12·2 answers
  • The instantaneous velocity of an object is the blank of the object with a blank
    7·2 answers
  • Which of these statements articulate one of Kirchhoff's laws? (Select all that apply)
    5·1 answer
  • Thin Layer Chromatography consists of three parts: The analyte, the stationary phase, and mobile phase. Match each of these term
    5·1 answer
  • What does the term conserved mean?
    9·1 answer
  • Which is an example of qualitative data?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!