Answer:
E = 1,873 10³ N / C
Explanation:
For this exercise we can use Gauss's law
Ф = E. dA =
/ ε₀
Where q_{int} is the charge inside an artificial surface that surrounds the charged body, in this case with the body it has a spherical shape, the Gaussian surface is a wait with radius r = 1.35 m that is greater than the radius of the sphere.
The field lines of the sphere are parallel to the radii of the Gaussian surface so the scald product is reduced to the algebraic product.
The surface of a sphere is
A = 4π r²
E 4π r² = q_{int} /ε₀
The net charge within the Gauussian surface is the charge in the sphere of q1 = + 530 10⁻⁹ C and the point charge in the center q2 = -200 10⁻⁹ C, since all the charge can be considered in the center the net charge is
q_{int} = q₁ + q₂
q_{int} = (530 - 200) 10⁻⁹
q_{int} = 330 10⁻⁹ C
The electric field is
E = 1 / 4πε₀ q_{int} / r²
k = 1 / 4πε₀
E = k q_{int}/ r²
Let's calculate
E = 8.99 10⁹ 330 10⁻⁹/ 1.32²
E = 1,873 10³ N / C
Answer:
Choice A: approximately
, assuming that the two pistons are connected via some confined liquid to form a simple machine.
Explanation:
Assume that the two pistons are connected via some liquid that is confined. Pressure from the first piston:
.
By Pascal's Principle, because the first piston exerted a pressure of
on the liquid, the liquid will now exert the same amount of pressure on the walls of the container.
Assume that the second piston is part of that wall. The pressure on the second piston will also be
. In other words:
.
To achieve a force of
, the surface area of the second piston should be:
.
I think you can google this because I really don’t know the answer I’m so sorry
The spiral structure emerges when galactic clusters (open), H II regions and O & B type stars (young stars) are used as tracers. We know this to be true as other pinwheel galaxies exhibit the same patterns across these tracers as in the milky way.
Here are the ones that I know about
and can think of just now:
-- wind
-- solar
-- nuclear
-- tidal
-- hydro
-- geothermal
-- biomass