A )
T = mB g + mB a
T + mA a - mA g sin 35° = (Mi) mA g cos 35°
------------------------------------------------------------
T = 2.7 · 9.81 + 2.7 a
T = 26.487 + 2.7 a
26.487 + 2.7 a + 2.7 a - 2.7 · 9.81 · 0.574 = 0.15 · 2.7 · 9.81 · 0.819
5.4 a + 26.487 - 15.2023 = 3.2539
5.4 a = 8.0296
a = 1.487 ≈ 1.5 m/s²
B )
T = 2,7 · 9.81 = 26.487
26.487 - 15.2035 = (Mi) · 2.7 · 9.81 · 0.819
11.2835 = (Mi) · 21.69
(Mi) = 11.2835 : 21.69 = 0.52
Answer:
v_f = 0.87 m/s
Explanation:
We are given;
F_avg = -17700 N (negative because it's backward)
m = 117 kg
Δt = 5.50 × 10^(−2) s
v_i = 7.45 m/s
Now, formula for impulse is given by;
I = F•Δt = - 17700 x 5.50 × 10^(−2) = - 973.5 kg.m/s
From impulse momentum theory, we know that;
Change in momentum of particle is equal to impulse.
Thus,
Δp = I = m•v_f - m•v_i
Thus,
-973.5= 117(v_f - 7.45)
Thus,
-973.5/117 = (v_f - 7.45)
-8.3205 + 7.45 = v_f
v_f = - 0.87 m/s
We'll take absolute value as;
v_f = 0.87 m/s
Weight doesn't really mean much as it just means gravity the bigger a space object is the more force it has to pull on something since the moon is smaller than the earth then it has less gravity and then less weight on scales.
Answer:
The answer is "No, Hoverboards are risky, and riders are in danger of falling".
Explanation:
It's also known as a self-balanced scooter, it handheld electrical devices traveling on two wheels are hoverboards. It dominated the industry around 2015 and since then has become more and more successful. A rider is balanced on a frame between these wheels, driven by battery-powered lithium-ion batteries.
Answer:C) car X
Explanation:
Given
All the cars have identical Engine thus Force Produced by car X will be equal to Y and Z
and
Since Car X is most massive so acceleration associated with it will be minimum
acceleration of car X is minimum thus it will travel farthest