Answer and Explanation:
(a) The attached image below shows the diagram of a CRT in the helmholtz coils and well labelled with details
(b). The electron will follow a circular path which travels along under constant magnetic field

where m = mass of electron, V = velocity of electron, q = charge of the electron and B = magnetic field strength
Answer:
he fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Explanation:
Let's pose the solution of this problem, to be able to analyze the firm affirmations.
When the person is falling, the weight acts on them all the time, initially the rope has no force, but at the moment it begins to lash it exerts a force towards the top that is proportional to the lengthening of the rope.
The equation for this part is
Fe - W = m a
k x - mg = m a
As the axis of rotation is located at the top where they jump, there is a torque.
What is it
Fe y - W y = I α
angular and linear acceleration are related
a = α r
Fe y - W y = I a / r
In the fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Answer:
total surface area is 432
Explanation:
Given data
base = 6
diagonals = 8
altitude = 12
to find out
total surface area
solution
we know total surface area of prism is
total surface area = lateral surface area + 2base area ..............1
so
first we calculate base perimeter i.e = 2 length + 2 width
so perimeter = 2(8) + 2(6) = 25
and area = length * width = 8*6 = 48
so lateral surface area is perimeter * height i.e
lateral surface area = 28* 12
lateral surface area = 336
put this value in equation 1 we get
total surface area = lateral surface area + 2base area
total surface area = 336 + 2(48)
total surface area is 432
Answer:
The value of the spring constant of this spring is 1000 N/m
Explanation:
Given;
equilibrium length of the spring, L = 10.0 cm
new length of the spring, L₀ = 14 cm
applied force on the spring, F = 40 N
extension of the spring due to applied force, e = L₀ - L = 14 cm - 10 cm = 4 cm
From Hook's law
Force applied to a spring is directly proportional to the extension produced, provided the elastic limit is not exceeded.
F ∝ e
F = ke
where;
k is the spring constant
k = F / e
k = 40 / 0.04
k = 1000 N/m
Therefore, the value of the spring constant of this spring is 1000 N/m