To solve this problem we will apply the concepts related to the final volume of a body after undergoing a thermal expansion. To determine the temperature, we will use the given relationship as well as the theoretical value of the volumetric coefficient of thermal expansion of copper. This is, for example to the initial volume defined as
, the relation with the final volume as



Initial temperature = 
Let T be the temperature after expanding by the formula of volume expansion
we have,

Where
is the volume coefficient of copper 




Therefore the temperature is 53.06°C
Answer: A is your best answer.
Explanation:
It should be A because the when the ball bounces on the ground the ground will give it force to bounce again but also it wont go as high as it first did. Hope this helps:))
Time t=2.4 minutes=2.4×60=144 seconds
distance s=1.2 miles=1.2×1609=1930.8 meters
speed v=s/t=1930.8÷144=[tex] \frac{1930.8}{144} = \frac{160.9}{12} =[/13.408m/s ~nearly]
The phenomena<span> of </span>atmospheric<span> electricity are of three kinds. ..... In the Earth-</span>ionosphere cavity, the electric field<span> and conduction current in the lower </span>atmosphere<span> </span>