He's accelerating at 3 m/s² . That means his speed is increasing by 3 m/s every second.At the end of 8 seconds, his speed is (8 x 3 m/s) = 24 m/s .He's been moving south for the whole 8 seconds.So at the end of that time, his velocity is 24 m/s south .
Answer:
Explanation:
the net force on the right left is 25 N and is directed upward
the net force on the left one is zero because 200N force act upward and 200N force act downward so both cancel each other and net force is zero
i hope this will help you
I'm going to assume that this gripping drama takes place on planet Earth, where the acceleration of gravity is 9.8 m/s². The solutions would be completely different if the same scenario were to play out in other places.
A ball is thrown upward with a speed of 40 m/s. Gravity decreases its upward speed (increases its downward speed) by 9.8 m/s every second.
So, the ball reaches its highest point after (40 m/s)/(9.8 m/s²) = <em>4.08 seconds</em>. At that point, it runs out of upward gas, and begins falling.
Just like so many other aspects of life, the downward fall is an exact "mirror image" of the upward trip. After another 4.08 seconds, the ball has returned to the height of the hand which flung it. In total, the ball is in the air for <em>8.16 seconds</em> up and down.
Answer:
90 J
Explanation:
W=fd
W=(75)(1.2)
W= 90 J
The rocket engine works on the basic principle proposed by Newton which is Newton’s Third Law.