To determine the energy equivalent of an object, we use the famous equation of Einstein which is E=mc^2 where m is the mass of the object and c is the speed of light (3x10^8 m/s). We calculate as follows:
E = mc^2
E = 1.83 kg (3x10^8 m/s)^2
E = 1.647x10^17 J
Answer:
its direction is changing
We need to be careful here.
The calculation of the gravitational force between two objects
refers to the distance between their centers.
The minimum possible distance between the Earth's and moon's
centers is the sum of their radii (radiuses).
Earth's radius . . . . . 6,360 km = 6.36 x 10⁶ meters
Moon's radius . . . . . 1,738 km = 1.738 x 10⁶ meters
Sum of their radii = 8.098 x 10⁶ meters
Also:
Earth's mass . . . . . 5.972 x 10²⁴ kg
Moon's mass . . . . . 7.348 x 10²² kg
<span>
and now we're ready to go !
Gravitational force =
G M₁ M₂ / R²
= (6.67 x 10⁻¹¹ N-m²/kg²)(</span><span>5.972 x 10²⁴ kg)(7.348 x 10²² kg)/</span>(8.098 x 10⁶ m)²
= (6.67 · 5.972 · 7.348 / 8.098²) · (10²³) Newtons
= (I get ...) 4.463 x 10²³ Newtons
That's almost exactly 10²³ pounds
= 50,153,000,000,000,000,000 tons.
Those are big numbers.
All I can say is: I wouldn't exactly call that "resting" on the surface".
When crest of one wave interferes with the trough of other wave, the amplitude of the resultant wave formed is less. Hence the type of interference is destructive interference.
Answer:
Change in temperature ∆(tita) is 266.097°C
Explanation:
Ok kinectic energy = 1/2MV²
5.4 grams =( 5.4/1000) kilogram
Kinectic energy =( 1/2 )*(5.4/1000)*261²
Kinectic energy = 183.9267 joules
If kinetic energy = thermal energy
183.9267 joules = mc∆(tita)
Where ∆(tita) = change in temperature
And c = 128 J/kg
∆(tita) = 183.9267/((5.4/1000)*128)
∆(tita) = 266.097
∆(tita) = 266.097°C