There are a variety of waves from light waves to mechanical waves. Waves can exhibit different effects like the Doppler Effect.
All light waves behave in a similar manner. They either get transmitted, reflected, absorbed, refracted, polarized, diffracted, or scattered based off of the composition of the object and the wavelength of the light.
According to Wikipedia, “One important property of mechanical waves is that their amplitudes are measured in an unusual way, displacement divided by (reduced) wavelength. When this gets comparable to unity, significant nonlinear effects such as harmonic generation may occur, and, if large enough, may result in chaotic effects.” Mechanical waves are chaotic and its “amplitudes” are measured unusually.
Diffraction is when light bends around objects and spread after passing out through small openings. “Diffraction occurs with all waves, including sound waves, water waves, and electromagnetic waves such as light that the eye can see.”-Wikipedia. Here is the formula to Diffraction: <em>d </em>sin <em>θ </em>= <em>nλ</em>
Doppler effect can occur for any type of wave like sound or water waves. An example of this is when we hear a police car with its sirens on, coming towards us. The closer you are to the police car, the higher the wavelength, but the farther away you are, the lower the wavelength.
<em />
Dispersion angle = 0.3875 degrees.
Width at bottom of block = 0.09297 cm
Thickness of rainbow = 0.07038 cm
Snell's law provides the formula that describes the refraction of light. It is:
n1*sin(θ1) = n2*sin(θ2)
where
n1, n2 = indexes of refraction for the different mediums
θ1, θ2 = angle of incident rays as measured from the normal to the surface.
Solving for θ2, we get
n1*sin(θ1) = n2*sin(θ2)
n1*sin(θ1)/n2 = sin(θ2)
asin(n1*sin(θ1)/n2) = θ2
The index of refraction for air is 1.00029, So let's first calculate the angles of the red and violet rays.
Red:
asin(n1*sin(θ1)/n2) = θ2
asin(1.00029*sin(40.80)/1.641) = θ2
asin(1.00029*0.653420604/1.641) = θ2
asin(0.398299876) = θ2
23.47193844 = θ2
Violet:
asin(n1*sin(θ1)/n2) = θ2
asin(1.00029*sin(40.80)/1.667) = θ2
asin(1.00029*0.653420604/1.667) = θ2
asin(0.39208764) = θ2
23.08446098 = θ2
So the dispersion angle is:
23.47193844 - 23.08446098 = 0.38747746 degrees.
Now to determine the width of the beam at the bottom of the glass block, we need to calculate the difference in the length of the opposite side of two right triangles. Both triangles will have a height of 11.6 cm and one of them will have an angle of 23.47193844 degrees, while the other will have an angle of 23.08446098 degrees. The idea trig function to use will be tangent, where
tan(θ) = X/11.6
11.6*tan(θ) = X
So for Red:
11.6*tan(θ) = X
11.6*tan(23.47193844) = X
11.6*0.434230136 = X
5.037069579 = X
And violet:
11.6*tan(θ) = X
11.6*tan(23.08446098) = X
11.6*0.426215635 = X
4.944101361 = X
So the width as measured from the bottom of the block is: 5.037069579 cm - 4.944101361 cm = 0.092968218 cm
The actual width of the beam after it exits the flint glass block will be thinner. The beam will exit at an angle of 40.80 degrees and we need to calculate the length of the sides of a 40.80/49.20/90 right triangle. If you draw the beams, you'll realize that:
cos(θ) = X/0.092968218
0.092968218*cos(θ) = X
0.092968218*cos(40.80) = X
0.092968218*0.756995056 = X
0.070376481 = X
So the distance between the red and violet rays is 0.07038 cm.
More mass and less difference
Answer:
Ozone layer in the upper atmosphere filters most of the harmful radiations of shorter wavelength. It actually absorbs the hazardous radiations like ultraviolet, gamma rays, x- rays and most of all those having shorter wavelength then the visible light. That's how the earth's atmosphere protects life on earth. But unfortunately, climate change and global warming is causing the depletion of ozone layer which is causing skin related diseases and harming not only the human life but also the plants and animals.
Explanation:
90 kmhr—1 x 1000/3600 = 25ms—1
U = 0 ms—1
V = 25ms—1
t = 10 s
a = ?
a = V - U/t
a = 25 - 0/10
a = 25/10
a = 2.5 ms—1