We take the derivative of Ohm's law with respect to time: V = IR
Using the product rule:
dV/dt = I(dR/dt) + R(dI/dt)
We are given that voltage is decreasing at 0.03 V/s, resistance is increasing at 0.04 ohm/s, resistance itself is 200 ohms, and current is 0.04 A. Substituting:
-0.03 V/s = (0.04 A)(0.04 ohm/s) + (200 ohms)(dI/dt)
dI/dt = -0.000158 = -1.58 x 10^-4 A/s
Answer:
Explanation:
Given that:
angular frequency = 11.3 rad/s
Spring constant (k) = 
k = (11.3)² m
k = 127.7 m
where;
= 0.065 m
= 0.048 m
According to the conservation of energies;

∴




"The rock has a downward acceleration of 9.8 m/s2" is the one among the following choices that explains the <span>rock’s acceleration at the instant that it reaches the top of its trajectory (where its velocity is momentarily zero). The correct option among all the options that are given in the question is option "D". </span>
Its simple dominant and recessive inheritance patterns and organism would need two recessive alleles(rr) for the trait to be expressed but only one dominant allele for that trait to be expressed (RR or Rr) however in the case of co-dominant alleles the heterozygous state (Rr) would produce a third phenotype rather that the dominant phenotype.
I think it is B the rise of the land