Answer:
a) 23.51 m/s
b) 1.07 kg
Explanation:
Parameters given:
Kinetic energy, K = 295 J
Momentum, p = 25.1 kgm/s
a) The kinetic energy of a body is given as:

where m = mass of the body and v = speed of the body
We know that momentum is given as:
p = mv
Therefore:
K = 1/2 * pv
=> v = 2K / p
v = (2 * 295) / 25.1 = 23.51 m/s
The velocity of the body at that instant is 23.51 m/s.
b) Momentum is given as:
p = mv
=> m = p / v
m = 25.1 / 23.51 = 1.07 kg
The mass of the body at that instant is 1.07 kg
Answer: 42.49
Explanation:
To solve this, we need to keep in mind the following:
While the sphere hangs it is under the effect of gravity. It is creating a Angle of 90° taking the roof as a reference.
Gravity can be noted as a Acceleration Vector. The magnitud for Earth's Gravity is a constant: 9.81 
The acceleration of the Van will affect the sphere also, but this accelaration will be on the X-axis and perpendicular to the gravity. Because this two vectors are taking action under the sphere they will create a angle. This angle can be measured as a relation of the two magnitudes.
Tangent (∅) = Opossite Side / Adyacent Side
By trigonometry, we know the previous formula. This formula allows us to find the Tangent of a angle as a relation between the two perpendiculars magnitudes. In this case the Opossite Side will be the Gravity Accelaration, while the Adyancent Side is the Van's Acceleration.
(1) Tangent (∅) = Gravity's Acceleration (G) / Van's Acceleration (Va)
Searching for the Va in (1)
Va = G/Tan(∅)
Where ∅ in this case is equal to 13.0°
Va = 9.81
/ Tan(13.0°)
Va = 42.49
The vans acceleration need to be 42.49
to create an angle of 13° with the Van's Roof
Answer:
D.
R increases
V is constant
I decreases
Explanation:
The resistance of a wire is given by the following formula:

It is clear from this formula that resistance is directly proportional to the length of wire. So, when length of wire is increased, <u>the resistance of circuit increases</u>.
The <u>voltage in the circuit will be constant</u> as the voltage source remains same and it is not changed.
Now, we can use Ohm Law:
V = IR
at constant V:
I ∝ 1/R
it means that current is inversely proportional to resistance. Hence, the increase of resistance causes <u>the current in circuit to decrease.</u>
Therefore, the correct option will be:
<u>D.</u>
<u>R increases
</u>
<u>V is constant
</u>
<u>I decreases</u>
Rolling of the eyes. The person is either vexed or frustrated.
Because the hamburger is still hot from the grill, the cheese melts because of that heat.