Answer:
0.78 atm
Explanation:
Step 1:
Data obtained from the question. This includes:
Mass of CO2 = 5.6g
Volume (V) = 4L
Temperature (T) =300K
Pressure (P) =?
Step 2:
Determination of the number of mole of CO2.
This is illustrated below:
Mass of CO2 = 5.6g
Molar Mass of CO2 = 12 + (2x16) = 12 + 32 = 44g/mol
Number of mole CO2 =?
Number of mole = Mass/Molar Mass
Number of mole of CO2 = 5.6/44
Number of mole of CO2 = 0.127 mole
Step 3:
Determination of the pressure in the container.
The pressure in the container can be obtained by applying the ideal gas equation as follow:
PV = nRT
The gas constant (R) = 0.082atm.L/Kmol
The number of mole (n) = 0.127 mole
P x 4 = 0.127 x 0.082 x 300
Divide both side by 4
P = (0.127 x 0.082 x 300) /4
P = 0.78 atm
Therefore, the pressure in the container is
<u>Answer:</u> The pH of the buffer is 5.25
<u>Explanation:</u>
Let the volume of buffer solution be V
We know that:

To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[\text{conjugate base}]}{[acid]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5B%5Ctext%7Bconjugate%20base%7D%5D%7D%7B%5Bacid%5D%7D%29)
We are given:
= negative logarithm of acid dissociation constant of weak acid = 4.90
![[\text{conjugate base}]=\frac{2.25}{V}](https://tex.z-dn.net/?f=%5B%5Ctext%7Bconjugate%20base%7D%5D%3D%5Cfrac%7B2.25%7D%7BV%7D)
![[acid]=\frac{1.00}{V}](https://tex.z-dn.net/?f=%5Bacid%5D%3D%5Cfrac%7B1.00%7D%7BV%7D)
pH = ?
Putting values in above equation, we get:

Hence, the pH of the buffer is 5.25
I believe this pertains to chemical reaction? So my guess would be answer A “Fire burning”
Don’t quote me though lol.
40.1g of nitrogen gas is produced.
The equation given is
2 NH₃ + 3 CuO →3 Cu + N₂ + 3 H₂O
This equation is already balanced.
When 3 moles of CuO are consumed, 1 mole of nitrogen gas is produced.
We get 1 mole of nitrogen from 3 moles of copper oxide.
We need to find the number of moles of nitrogen gas produced when 4.3 moles of copper oxide are consumed.
4.3/3 x 1 = 1.433 mols
- 1.433 mols of nitrogen gas are produced
- The molar mass of nitrogen gas is 14+14 = 28g
- The amount of nitrogen gas produced in grams is 28x1.433 = 40.1g
40.1g of nitrogen gas can be made when 4.3 moles of CuO are consumed.
Learn more about molarity here:
brainly.com/question/24305514
#SPJ10
A mixture is a substance made by combining two or more different materials in such a way that no chemical reaction occurs.
A mixture can usually be separated back into its original components. Some examples of mixtures are a tossed salad, salt water and a mixed bag of M&M's candy.