Answer:
a). V = 3.13*10⁶ m/s
b). T = 1.19*10^-7s
c). K.E = 2.04*10⁵
d). V = 1.02*10⁵V
Explanation:
q = +2e
M = 4.0u
r = 5.94cm = 0.0594m
B = 1.10T
1u = 1.67 * 10^-27kg
M = 4.0 * 1.67*10^-27 = 6.68*10^-27kg
a). Centripetal force = magnetic force
Mv / r = qB
V = qBr / m
V = [(2 * 1.60*10^-19) * 1.10 * 0.0594] / 6.68*10^-27
V = 2.09088 * 10^-20 / 6.68 * 10^-27
V = 3.13*10⁶ m/s
b). Period of revolution.
T = 2Πr / v
T = (2*π*0.0594) / 3.13*10⁶
T = 1.19*10⁻⁷s
c). kinetic energy = ½mv²
K.E = ½ * 6.68*10^-27 * (3.13*10⁶)²
K.E = 3.27*10^-14J
1ev = 1.60*10^-19J
xeV = 3.27*10^-14J
X = 2.04*10⁵eV
K.E = 2.04*10⁵eV
d). K.E = qV
V = K / q
V = 2.04*10⁵ / (2eV).....2e-
V = 1.02*10⁵V
|acceleration| = (change in speed) / (time for the change)
Change in the car's speed = (27 - 0) = 27 m/s
Time for the change = 10 sec
|acceleration| = (27 m/s) / (10 s) = 2.7 m/s² .
That's the magnitude of the car's acceleration.
We don't know anything about its direction.
Answer:
0.02 s
Explanation:
Take the (+x) direction to be up.
The average velocity v during a time interval Δt is the displacement Δx divided by Δt.
v=Δx/Δt
=x_f-x_i/t_f-t_i (1)
We assume that your height is 1.6m
Solving [1]
Δt=Δx/v
= 0.02 s
Answer:
V is greater
Explanation:
because v intial at that time V final is the that speed which it is going at that time