Answer:
55.42 m/s
Explanation:
Along the horizontal direction, the rock travels at constant speed: this means that its horizontal velocity is constant, and it is given by
u_x = d/t
Where
d = 160 m is the distance covered
t = 5.0 s is the time taken
Substituting, we get
u_x =160/5 = 32 m/s.
Along the vertical direction, the rock is in free-fall - so its motion is a uniform accelerated motion with constant acceleration g = -9.8 m/s^2 (downward). Therefore, the vertical distance covered is given by the
where
S = -100 m is the vertical displacement
u_y is the initial vertical velocity
Replacing t = 5.0 s and solving the equation for u_y, we find
-100 = u_y(5) + (-9.81)(5)^2/2
u_y = 45.25 m/s
Therefore, the speed with which the rock was thrown u