1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ne4ueva [31]
3 years ago
6

A high pitch always corresponds to

Physics
1 answer:
deff fn [24]3 years ago
6 0
A high pitch always corresponds to a high frequency wave
You might be interested in
A metal rod A and a metal sphere B, on insulating stands, touch each other. They are originally neutral. A positively charged ro
ryzh [129]

Answer:

The sphere is positively charged

Explanation:

This is because when the positively charged rod is brought near the metal rod A, the electrons in metal rod A and sphere B are attracted towards it into metal rod A while the positive charges in the are repelled into sphere B. So, when the charged rod is withdrawn, and metal rod A and sphere B are separated, metal rod A is now negatively charged, but sphere B is positively charged.

So, sphere B is positively charged.

3 0
3 years ago
Who proposed the theory that mental processes originated in the brain?
Shtirlitz [24]
Plato was the one that suggested that the brain is the mechanism of mental process.
8 0
3 years ago
Read 2 more answers
Calculate the kinetic energy of a 0.032 kg ball as it leaves a hand to be thrown upwards at 6.2 m/s
AnnZ [28]

Answer:

The ball will have a kinetic energy of 0.615 Joules.

Explanation:

Use the kinetic energy formula

E_k = \frac{1}{2}mv^2 = \frac{1}{2}0.032kg\cdot 6.2^2 \frac{m^2}{s^2}= 0.615J

The kinetic energy at the moment of leaving the hand will be 0.615 Joules. (From there on, as it ball is traveling upwards, this energy will be gradually traded off with potential energy until the ball's velocity becomes zero at the apex of the flight)

3 0
3 years ago
EASY MATCHING PLEASE HELP!
kakasveta [241]
<h2><u>Answers:</u></h2><h2>1.) Right answer: polarization  </h2>

Alignment of light in only one vibrational orientation: polarization  

Normally, electromagnetic waves (light) are not polarized, so electromagnetic vibration occurs in all planes. But when we get these waves to vibrate in a single plane, we have polarized light.

This is possible because electromagnetic waves are transversal waves, this means the electric field oscillates in all normal directions to the direction of wave propagation.

In other words:

<em>Its oscillation occurs in the transversal direction to its propagation. </em>

So, when polarization occurs the electric field vibrates or oscillates in a given plane, called the <u>polarization plane</u>.

It should be noted that this phenomenon is only possible in transversal waves, in longitudinal waves, such as sound waves, polarization is not possible because its oscillation occurs in the same direction as its propagation.

<h2>2.) Right answer: concave  </h2>

Mirror that causes parallel incident rays of light to converge at the focus: concave  

A concave mirror, or convergent mirror, has a reflective surface that is curved inwards.

The concave mirrors reflect the light making it converge in a focal point therefore they are used to focus the light. This occurs because the light is reflected with different angles, since the normal to the surface varies from one point to another of the mirror.

<h2>3.) Right answer: photoelectric effect </h2>

phenomenon that can be explained only by a particle model for light: photoelectric effect  

Light can be considered as a wave or as particles (photons), in this context the photoelectric effect can only be explained based on the corpuscular model (particles) of light.

Then, the photoelectric effect consists of the emission of electrons (electric current) that occurs when light falls on a metal surface under certain conditions.

If the light is a stream of photons and each of them has energy, this energy is be able to pull an electron out of the crystalline lattice of the metal and communicate, in addition, a kinetic energy.

 

<h2>4.) Right answer: Taylor's experiment   </h2>

experiment that showed that diffraction effects could be attributed to light particles: Taylor's experiment  

This experiment was carried out by Geoffrey Taylor in 1909 with a flame as a light source, a diffraction grating and a photographic plate.

All this to test the diffraction of light.


<h2> 5.) Right answer: reflection  </h2>

principal use of mirrors: reflection

Mirrors fulfill the principle of reflection, which occurs when the light rays fall on a very flat reflecting surface are reflected so that the incident angle is equal to the reflected angle

<h2>6.) Right answer: mirage  </h2>

image of the sky seen on a hot road: mirage

A mirage is the product of an optical illusion due to the total reflection of the light when crossing layers of hot air of different density; this causes the perception of the inverted image of distant objects, as if they were reflected in the water.

<h2>7.) Right answer: virtual  </h2>

type of images always produced by convex  mirrors: virtual

In the convex mirrors the focus is virtual and the focal distance is negative. This is how the reflected rays diverge and only their extensions are cut at a point on the main axis, resulting in a virtual image of the real object.

<h2>8.) Right answer: diffraction  </h2>

pattern produced by light through a narrow slit: diffraction

Diffraction is a phenomenon that is based on the deviation of the waves (light waves in this case) when encountering an obstacle or going through a slit

<h2>9.) Right answer: convex  </h2>

shape of a converging lens: convex  

A convex lens is thicker in the center than at its edges and concentrates (converges) at a point the rays of light that pass through it.

<h2>10.) Right answer: dispersion  </h2>

separating light into component colors: dispersion  

The dispersion of light occurs when a beam of composite light is refracted (the different rays of light are diverted depending on their frequencies) in some medium, leaving their constituent colors separated.

The best known case is when a beam of white light from the sun passes through a prism, thus obtaining rays of different colors like those of the rainbow.


8 0
3 years ago
Read 2 more answers
A car accelerates at a rate of 13m/s^2[S]. If the car's initial velocity is 120km/h[N]. What will its final velocity be in m/s,
Delvig [45]

Answer:

the final velocity of the car is 59.33 m/s [N]

Explanation:

Given;

acceleration of the car, a = 13 m/s²

initial velocity of the car, u = 120 km/h = 33.33 m/s

duration of the car motion, t = 2 s

The final velocity of the car in the same direction is calculated as follows;

v = u + at

where;

v is the final velocity of the car

v = 33.33 + (13 x 2)

v = 59.33 m/s [N]

Therefore, the final velocity of the car is 59.33 m/s [N]

6 0
3 years ago
Other questions:
  • A wave with a frequency of 190 hz and a wavelength of 28.0 cm is traveling along a cord. the maximum speed of particles on the c
    9·1 answer
  • How many elective courses does a college student typically have to take to earn a bachelors degree?
    13·2 answers
  • List important agents,or causes of erosion
    9·2 answers
  • What kind of motion for a star does not produce a Doppler effect? Explain.
    11·1 answer
  • Which of the following represents a virtual image? ​
    8·1 answer
  • Several motorboats with the same mass are used in an experiment. The forces of the different motors versus their accelerations a
    8·1 answer
  • Pulsed dye lasers emit light of wavelength 585 nm in 0.45 ms pulses to remove skin blemishes such as birthmarks. The beam is usu
    5·1 answer
  • What is robot??????????
    13·1 answer
  • A push on a 1-kg brick accelerates it. Neglecting friction, equally accelerating a 10-kg brick requires 10 times as much force.
    11·1 answer
  • Which of the following organelles is in plant cells, but not animal cells?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!