Answer:
FLUORINE, CHLORINE, BROMINE, IODINE, ASTATILE AND TENNESINE
Explanation :
Florine and chorine=gas
Bromine=liquid
ASTATILE and TENNESINE =solid
HOPE IT is right
<span>1) </span><span>Deduce
the two masses and see the amount of water was driven off when heated: </span><span>
<span>5.03 g -
4.23 g = 0.8 g H2O given off </span>
<span>2) Change
mass from grams to moles of H2O: </span>
<span>0.8 g H2O
/ 18 g H2O in 1 mole = 0.044 mol H2O </span>
<span>3) Change
left over mass to moles of BaCl2 .</span></span>
<span>
<span>4.23 g
BaCl2 / 207 g BaCl2 in 1 mol = 0.021 mol BaCl2 </span>
<span>4)Find
the ratio of mol H2O to mol BaCl2: </span>
<span>0.044 mol
H2O : 0.021 mol BaCl2 </span>
<span>5) The
resulting ratio is 2:1 so two H2O for each BaCl2, thus, the hydrate was named: </span>
<span>Barium
chloride di-hydrate</span></span>
Answer:
nglos324 - fe3c. Iron carbide is an interstitial compound of iron and carbon with the composition Fe- 6.68 wt % Carbon. It is a brittle ceramic material and is produced in carbon steels or cast irons during pseudo-equilibrium cooling from above the eutectoid temperature (723 C).
Explanation:
Answer:
π = 4.1 atm
Explanation:
We can calculate the osmotic pressure exerted by a solution using the following expression.
π = M . R . T
where,
π is the osmotic pressure
M is the molar concentration of the solution
R is the ideal gas constant
T is the absolute temperature
The absolute temperature is 37 + 273 = 310 K
π = M . R . T
π = (0.16 mol/L) . (0.082atm.L/mol.K) . 310 K = 4.1 atm