1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EastWind [94]
3 years ago
6

Obtain a relation for the logarithmic mean temperature difference for use in the LMTD method?

Engineering
1 answer:
kolezko [41]3 years ago
8 0

Answer:

The log mean temperature difference is:

ΔT,lm=(ΔT1-ΔT2)/㏑(ΔT1/ΔT2)

Explanation:

To evaluate the equivalent average temperature difference between two fluids we consider a parallel-flow double-pipe heat exchanger (see attached diagram). The temperature of the hot and cold fluids is large at the inlet of the heat exchanger and decreases exponentially toward the outlet.  

We can assume that the outer surface of the heat exchanger is well insulated and that heat transfer only occurs between the two fluids. We can also assume negligible kinetic and potential. The energy balance on each fluid can be written as the rate of heat loss from the hot fluid is equal to the rate of heat gained by the cold fluid in any section of the heat exchanger:

Q = -m,h×c,ph×dT,h   (1)

where Q=rate of heat loss, m=mass flow rate, c,ph=heat capacity of the hot fluid, dT,h= differential temperature of the hot fluid

Q = m,c×c,pc×T.c  (2)

where Q=rate of heat loss, m=mass flow rate, c,ph=heat capacity of the cold fluid, dT,h= differential temperature of the cold fluid

The temperature of the hot fluid change is negative and is added to make Q positive. Solving equations 1 and 2 in terms of dT:

dT.h = - Q/(m,h×c,ph)

dT.c =  Q/(m,c×c,pc)

and taking the difference:

dT,h-dT,c= d(T,h - T,c) = -Q(1/(m,h×c,ph) + 1/(m,c×c,pc)) (3)

The heat transfer rate in the differential section of the heat exchanger can be expressed as:

Q = U(T,h-T,c)×dA,s  (4)

where U=overall heat transfer coefficients, dA,s = differential sectional area. Substitute equation 4 into 3:

d(T,h - T,c)/(T,h - T,c) = -U×dA,s×(1/(m,h×c,ph) + 1/(m,c×c,pc))  (5)

Integrating equation 5:

㏑((T,h out - T,c out)/(T,h in - T,c in)) = -U×A,s×(1/(m,h×c,ph) + 1/(m,c×c,pc))  (6)

The first law of thermodynamics requires the rate of heat transfer from hot and cold fluid to be equal.

Q= m×c, pc×(T, c out-T, c in)  (7)

Q= m×c, ph×(T,h out-T, h in)   (8)

Solve equations 7 and 8 for m,c×c, pc and m,h×c, ph and substituting into equation 6:

Q = U×A,s×ΔT,lm

Where the log mean temperature difference is:

ΔT,lm=(ΔT1-ΔT2)/㏑(ΔT1/ΔT2)

Download pdf
You might be interested in
Almost all collisions are due to driver error
blondinia [14]

Answer:

Where's the questaion?

4 0
1 year ago
a stem and leaf display describes two-digit integers between 20 and 80. for one one of the classes displayed, the row appears as
allochka39001 [22]

Answer:

  52, 50, 54, 54, 56

Explanation:

The "stem" in this scenario is the tens digit of the number. Each "leaf" is the ones digit of a distinct number with the given tens digit.

  5 | 20446 represents the numbers 52, 50, 54, 54, 56

8 0
3 years ago
A spring-mass-damper instrument is employed for acceleration measurements. The spring constant is 12000 N/m. The mass is 5 g. Th
shepuryov [24]

Answer:

a) 246.56 Hz

b) 203.313 Hz

c) Add more springs

Explanation:

Spring constant = 12000 N/m

mass = 5g = 5 * 10^-3 kg

damping ratio = 0.4

<u>a) Calculate Natural frequency </u>

Wn = √k/m = \sqrt{12000 /  5*10^{-3}  }

                   = 1549.19 rad/s  ≈ 246.56 Hz

<u>b) Bandwidth of instrument </u>

W / Wn = \sqrt{1-2(0.4)^2}

W / Wn = 0.8246

therefore Bandwidth ( W ) = Wn * 0.8246 = 246.56 * 0.8246 = 203.313 Hz

C ) To increase the bandwidth we have to add more springs

5 0
3 years ago
Antilaser eyewear should be worn when a laser​ level's output is greater than​ ____
creativ13 [48]

Answer: 5mW

Explanation:

8 0
2 years ago
6. After removing the vacuum hose from the fuel-pressure regulator, you see gasoline has dripped out of the hose. Technician A s
lubasha [3.4K]

Answer:

Technician B is correct.

Explanation:

7 0
2 years ago
Other questions:
  • A fluid flows steadily through a pipe with a uniform cross sectional area. The density of the fluid decreases to half its initia
    6·1 answer
  • (1) 1. (15 points/ 3 points each) (a) Draw the binary search tree that is created if the following numbers are inserted in the t
    9·1 answer
  • Q5. A hypothetical metal alloy has a grain diameter of 2.4 x 10-2 mm. After a heat treatment at 575°C for 500 min, the grain dia
    7·1 answer
  • Shear plane angle and shear strain: In an orthogonal cutting operation, the tool has a rake angle = 16°. The chip thickness befo
    7·1 answer
  • thermodynamics A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop net cycle power
    9·1 answer
  • Let CFG G be the following grammar.
    7·2 answers
  • How can goal setting help with academic performance?
    13·1 answer
  • What is the thermal efficiency of this regeneration cycle in terms of enthalpies and fractions of total flow?
    9·1 answer
  • Which of the following tape measure techniques can be used to achieve accurate measurements? Choose all that apply.
    14·1 answer
  • Which of the following relationship types most closely resembles the relationship between the national importance of residential
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!