I think the answer is 7mm but I'm not sure.
Have a great day!
Answer options from an alternative source
- fructose
- lactose
- starch
- glucose
- cellulose
Answer:
- fructose -monosaccharide
- lactose - disaccharide
- starch - polysaccharide
- glucose - monosaccharide
- cellulose - polysaccharide
Explanation:
Monosaccharides are carbohydrates that are the simplest form of a sugar. They cannot be further broken down into smaller carbohydrates, and represent the basic building block for carbohydrates. Monosaccharides can form disaccharides, which are the sugar formed when two monosaccharides join together, or polysaccharides, which are chains of monosaccharides.
Answer:
A
Explanation:
I'm right I took the test
Answer:
Mass = 15.20 g of KCl
Explanation:
The balance chemical equation for the decomposition of KClO₃ is as follow;
2 KClO₃ = 2 KCl + 3 O₂
Step 1: Calculate moles of KClO₃ as;
Moles = Mass / M/Mass
Moles = 25.0 g / 122.55 g/mol
Moles = 0.204 moles
Step 2: Find moles of KCl as;
According to equation,
2 moles of KClO₃ produces = 2 moles of KCl
So,
0.204 moles of KClO₃ will produce = X moles of KCl
Solving for X,
X = 2 mol × 0.204 mol / 2 mol
X = 0.204 mol of KCl
Step 3: Calculate mass of KCl as,
Mass = Moles × M.Mass
Mass = 0.204 mol × 74.55 g/mol
Mass = 15.20 g of KCl
Answer:
0.0177 L of nitrogen will be produced
Explanation:
The decomposition reaction of sodium azide will be:

As per the balanced equation two moles of sodium azide will give three moles of nitrogen gas
The molecular weight of sodium azide = 65 g/mol
The mass of sodium azide used = 100 g
The moles of sodium azide used = 
so 1.54 moles of sodium azide will give =
mol
the volume will be calculated using ideal gas equation
PV=nRT
Where
P = Pressure = 1.00 atm
V = ?
n = moles = 2.31 mol
R = 0.0821 L atm / mol K
T = 25 °C = 298.15 K
Volume = 