AgNO₃ will act as the oxidising agent.
<h3><u>For the given chemical equation:</u></h3>
Cu + 2AgNO₃ → 2Ag + Cu(NO₃)₂
Half reactions for the given chemical reaction:
<u>Reducing agent:</u>
Cu → Cu²⁺ + 2e⁻
Copper is a reducing agent because it is losing 2 electrons, which causes an oxidation process.
<u>Oxidising Agent</u>:
Ag⁺ + e⁻ → Ag
The silver ion undergoes a reduction process and is regarded as an oxidizing agent since it is acquiring one electron per atom.
Hence, AgNO₃ is considered as an oxidizing agent and therefore the correct answer is Option B.
<h3><u>
Oxidising and Reducing agents</u></h3>
- An oxidizing agent is a substance that reduces itself after oxidizing another material. It passes through a reduction process in which it obtains electrons and the substance's oxidation state is decreased.
- A reducing agent is a chemical that oxidizes after reducing another material. It passes through an oxidation process in which it loses electrons and the substance's oxidation state increases.
To know more about the process of Oxidation and Reduction, refer to:
brainly.com/question/4222605
#SPJ4
Answer:
1) Ethanol
Explanation:
If we will have <u>interactions</u> we will need more <u>energy</u> to break them in order to go from liquid to gas. If we need more <u>energy</u>, therefore, the <u>temperature will be higher</u>.
In this case, we can discard the <u>propanone</u> because this molecule don't have the ability to form <u>hydrogen bonds</u>. (Let's remember that to have hydrogen bonds we need to have a hydrogen bond to a <u>heteroatom</u>, O, N, P or S).
Then we have to analyze the hydrogen bonds formed in the other molecules. For ethanol, we will have only <u>1 hydrogen bond</u>. For water and ethanoic acid, we will have <u>2 hydrogen bonds</u>, therefore, we can discard the ethanol.
For ethanoic acid, we have 2 <u>intramolecular hydrogen bonds</u>. For water we have 2 <u>intermolecular hydrogen bonds</u>, therefore, the strongest interaction will be in the <u>ethanoic acid</u>.
The<u> closer boiling point</u> to the 75ºC is the <u>ethanol</u> (boiling point of 78.8 ºC) therefore these molecules would have <u>enough energy</u> to <u>break</u> the hydrogen bonds and to past from<u> liquid to gas</u>.
A. Chloroplasts
B. The cell wall and the vacuole
C. Vacuoles
D. The mitochondrion
Potassium is an alkali metal with the chemical symbol K. It has an atomic number of 19, meaning that it has 19 positively charged protons. It also contains 19 electrons, which have a negative charge, and 20 neutrons, which do not hold a charge
Hope this help