A. Would be the correct answer :-)
Answer : The correct option is, +91 kJ/mole
Solution :
The balanced cell reaction will be,

Here copper (Cu) undergoes oxidation by loss of electrons, thus act as anode. Lead (Pb) undergoes reduction by gain of electrons and thus act as cathode.
First we have to calculate the standard electrode potential of the cell.
![E^0_{[Pb^{2+}/Pb]}=-0.13V](https://tex.z-dn.net/?f=E%5E0_%7B%5BPb%5E%7B2%2B%7D%2FPb%5D%7D%3D-0.13V)
![E^0_{[Cu^{2+}/Cu]}=+0.34V](https://tex.z-dn.net/?f=E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D%2B0.34V)

![E^0_{cell}=E^0_{[Pb^{2+}/Pb]}-E^0_{[Cu^{2+}/Cu]}](https://tex.z-dn.net/?f=E%5E0_%7Bcell%7D%3DE%5E0_%7B%5BPb%5E%7B2%2B%7D%2FPb%5D%7D-E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D)

Now we have to calculate the standard Gibbs free energy.
Formula used :

where,
= standard Gibbs free energy = ?
n = number of electrons = 2
F = Faraday constant = 96500 C/mole
= standard e.m.f of cell = -0.47 V
Now put all the given values in this formula, we get the Gibbs free energy.

Therefore, the standard Gibbs free energy is +91 kJ/mole
Anions are solvated in protic hydrogen-bonding solvents (such as ethanol). Consequently, nucleophiles are less reactive. Since soft nucleophiles are less strongly solvated than hard nucleophiles, these solvents boost the relative reactivity of soft anions.
<h3>
Ethanol is either a nucleophile or a base.</h3>
The ethanol is a base Because carbocation is an extremely reactive species, a base or nucleophile as weak as ethanol can replace or remove it. SN1 and E1 would not be conceivable without the carbocation or a strong departing group.
<h3>How do solvents impact anionic nucleophile's reactivity?</h3>
In polar aprotic solvents, nucleophilic substitution reactions of anionic nucleophiles often proceed more quickly. The normal relative reactivity order in such solvents (like DMSO)is Anions are solvated in protic hydrogen-bonding solvents (such as ethanol). Consequently, nucleophiles are less reactive.
Learn more about nucleophiles here:-
brainly.com/question/27127109
#SPJ4
Answer:
The number of moles of benzaldehyde = 0.0253 moles
Explanation:
The molecular formula of benzaldehyde is C₇H₆O
Its molecular mass is calculated from the atomic masses of the constituent atoms.
C = 12.0 g: H = 1.0 g; O = 16.0 g
Molecular mass = ( 12 * 7) + (1 * 6) + (16 * 1) = 106.0 g/mol
Number of moles of substance = mass of substance/ molar mass of the substance
mass of benzaldehyde = 2.68; molar mass = 106.0 g/mol
Number of moles of benzaldehyde = 2.68 g/ 106 g/mol = 0.0253 moles
Therefore, the number of moles of benzaldehyde = 0.0253 moles
Answer:
The half life is 
Explanation:
The half life of a first order reaction is mathematically represented as
Substituting
for the rate constant
