

ok, now press calculator. i dont have it now.
Copper (II) Carbonate + Heat yields copper (II) oxide and carbon dioxide
Molecular Equation: CuCo3 + heat > CuO + CO2
Answer:
a. 5.9 × 10⁻³ M/s
b. 0.012 M/s
Explanation:
Let's consider the following reaction.
2 N₂O(g) → 2 N₂(g) + O₂(g)
a.
Time (t): 12.0 s
Δn(O₂): 1.7 × 10⁻² mol
Volume (V): 0.240 L
We can find the average rate of the reaction over this time interval using the following expression.
r = Δn(O₂) / V × t
r = 1.7 × 10⁻² mol / 0.240 L × 12.0 s
r = 5.9 × 10⁻³ M/s
b. The molar ratio of N₂O to O₂ is 2:1. The rate of change of N₂O is:
5.9 × 10⁻³ mol O₂/L.s × (2 mol N₂O/1 mol O₂) = 0.012 M/s
1.) 0.875atm x 760.0 mmHg/atm
2.) 8I
7I 0
6I 0
5I 0
4I 0
3I 0
2I--------- 000000000 0I
1I-0------------------------ I---------------
0 50 100 150
Boiling point(degrees Celsius)
3.) The warmer the molecules are the faster they move like boiling water the gases are coming out of the water
4.)no clue
5.) A {solution} is always transparent, light passes through with no scattering from solute particles which are the molecule in size. The solution is homogeneous and does not settle out. A solution cannot be filtered but can be separated using the process of distillation.
A {suspension} is cloudy and heterogeneous. The particles are larger than 10,000 Angstroms which allows them to be filtered. If a suspension is allowed to stand the particles will separate out.
<span>A {colloid} is intermediate between a solution and a suspension. While a suspension will separate out a colloid will not. Colloids can be distinguished from solutions using the Tyndall effect. Light passing through a colloidal dispersion, such as smoky or foggy air, will be reflected by the larger particles and the light beam will be visible. A hydrocolloid can simply be defined as a substance that forms a gel when it comes in contact with water. Such substances include both polysaccharides and proteins.
6.)</span><span>The random movement of microscopic particles suspended in a liquid or gas, caused by collisions with molecules of the surrounding medium. Also called Brownian motion, molecular movement, pedesis.
hope that helps please mark me as brainly
</span>
Answer:
![\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D)
Less than the concentration of Pb2+(aq) in the solution in part ( a )
Explanation:
From the question:
A)
We assume that s to be the solubility of PbI₂.
The equation of the reaction is given as :
PbI₂(s) ⇌ Pb²⁺(aq) + 2I⁻(aq); Ksp = 7 × 10⁻⁹
[Pb²⁺] = s
Then [I⁻] = 2s
![K_{sp} =\text{[Pb$^{2+}$][I$^{-}$]}^{2} = s\times (2s)^{2} = 4s^{3}\\s^{3} = \dfrac{K_{sp}}{4}\\\\s =\mathbf{ \sqrt [3]{\dfrac{K_{sp}}{4}}}\\\\\text{The mathematical expressionthat can be used to determine the value of }\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BPb%24%5E%7B2%2B%7D%24%5D%5BI%24%5E%7B-%7D%24%5D%7D%5E%7B2%7D%20%3D%20s%5Ctimes%20%282s%29%5E%7B2%7D%20%3D%20%204s%5E%7B3%7D%5C%5Cs%5E%7B3%7D%20%3D%20%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%5C%5C%5C%5Cs%20%3D%5Cmathbf%7B%20%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D%5C%5C%5C%5C%5Ctext%7BThe%20mathematical%20expressionthat%20can%20be%20used%20to%20determine%20the%20value%20of%20%20%7D%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D)
B)
The Concentration of Pb²⁺ in water is calculated as :
![\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D)
![\mathbf{s =\sqrt [3]{\dfrac{7*10^{-9}}{4}}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7B7%2A10%5E%7B-9%7D%7D%7B4%7D%7D%7D)
![\mathbf{s} =\sqrt[3]{1.75*10^{-9}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%7D%20%3D%5Csqrt%5B3%5D%7B1.75%2A10%5E%7B-9%7D%7D)

The Concentration of Pb²⁺ in 1.0 mol·L⁻¹ NaI




The equilibrium constant:
![K_{sp} =[Pb^{2+}}][I^-]^2 \\ \\ K_{sp} = s*(1.0*2s)^2 =7*1.0^{-9} \\ \\ s = 7*10^{-9} \ \ m/L](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5BPb%5E%7B2%2B%7D%7D%5D%5BI%5E-%5D%5E2%20%5C%5C%20%5C%5C%20K_%7Bsp%7D%20%3D%20s%2A%281.0%2A2s%29%5E2%20%3D7%2A1.0%5E%7B-9%7D%20%5C%5C%20%5C%5C%20s%20%3D%207%2A10%5E%7B-9%7D%20%5C%20%5C%20%20m%2FL)
It is now clear that maximum possible concentration of Pb²⁺ in the solution is less than that in the solution in part (A). This happens due to the common ion effect. The added iodide ion forces the position of equilibrium to shift to the left, reducing the concentration of Pb²⁺.