1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arada [10]
3 years ago
7

A car is traveling at 70 mi/h on a level section of road with good, wet pavement. Its antilock braking system (ABS) only starts

to work after the brakes have been locked for 100 ft. If the driver holds the brake pedal down completely, immediately locking the wheels, and keeps the pedal down during the entre process, how many feet will it take the car to stop from the point of initial brake application? (The braking efficiency is 80% with the ABS not working and 100% with the ABS working. Use theoretical stopping distance and ignore air resistance. Let frl = 0.02 when the brakes are locked, but compute the frl once the ABS becomes active.)
Engineering
1 answer:
siniylev [52]3 years ago
5 0

Answer: The theoretical stopping distance is 1.245 miles (6572.193 ft).

Explanation:

First, the physical model is created by using Principle of Energy Conservation and Work-Energy Theorem. It is assumed that surface is horizontal, so there are no changes associated with potential energy. The car has an initial kinetic energy, which is completely dissipated by braking.

K_{1} = \Delta W_{loss}

\frac{1}{2} \cdot m \cdot v^{2} = m \cdot g \cdot (\mu_{2} \cdot \Delta s_{2}+\mu_{2'} \cdot \Delta s_{2'})

The distance is isolated from previous equation:

\Delta s_{2'} = \frac{1}{\mu_{2'}}\cdot (\frac{1}{2}\cdot \frac{v^{2}}{g} - \mu_{2} \cdot \Delta s_{2})

By replacing variables, the distance is calculated herein:

\Delta s_{2'} = \frac{1}{\frac{0.02}{0.80}}\cdot (\frac{1}{2}\cdot \frac{(102.667\frac{ft}{s} )^2}{32.174 \frac{ft}{s^{2}}} -  (0.02) \cdot (100 ft))

\Delta s_{2'} = 6472.193 ft\\\Delta s_{2'} = 1.226 mi

The theoretical stopping distance is:

\Delta s = \Delta s_{2} + \Delta s_{2'}\\\Delta s = 6572.193 ft\\\Delta s = 1.245 mi

You might be interested in
How does java achieve portable
sergejj [24]

Answer:

Java is called portable because you can compile a java code which will spew out a byte-code, and then you run that code with Java Virtual Machine. Java Virtual Machine is like an interpreter, which reads the compiled byte-code and runs it. So first of all, you need to install the JVM on the system you want.

Explanation:

5 0
3 years ago
In part A you are asked to write the pseudocode for the program. In part B you are asked to write the syntax of the code for the
Naya [18.7K]

Answer:

C++.

Explanation:

#include <iostream>

#include <string>

using namespace std;

///////////////////////////////////////////////////////////////

int main() {

   string quote, book;

   int page;

   

   cout<<"What is your favorite quote from a book?"<<endl;

   getline(cin, quote);

   cout<<endl;

   /////////////////////////////////////////////

   cout<<"What book was that quote from?"<<endl;

   getline(cin, book);

   cout<<endl;

   /////////////////////////////////////////////

   cout<<"What page was that quote from?"<<endl;

   cin>>page;

   cout<<endl;

   /////////////////////////////////////////////

   int no_of_upper_characters = 0;

   for (int i=0; i<quote.length(); i++) {

       if (isupper(quote[i]))

          no_of_upper_characters++;

   }

   

   cout<<"No. of upper case characters: "<<no_of_upper_characters<<endl;

   /////////////////////////////////////////////

   int no_of_characters = quote.length();

   cout<<"No. of characters: "<<no_of_characters<<endl;

   /////////////////////////////////////////////

   bool isDog = false;

   for (int i=0; i<quote.length(); i++) {

       if (isDog == true)

           break;

       else if (quote[i] == 'd') {

           for (int j=i+1; j<quote.length(); j++) {

               if (isDog == true)

                   break;

               else if (quote[j] == 'o') {

                   for (int z=j+1; z<quote.length(); z++) {

                       if (quote[z] == 'g') {

                           isDog = true;

                           break;

                       }

                   }

               }

           }

       }

   }

   

   if (isDog == true)

       cout<<"This includes 'd' 'o' 'g' in the quote";

   //////////////////////////////////////////////

   return 0;

}

3 0
3 years ago
A square-thread power screw is used to raise or lower the basketball board in a gym, the weight of which is W = 100kg. See the f
KIM [24]

Answer:

power = 49.95 W

and it is self locking screw

Explanation:

given data

weight W = 100 kg = 1000 N

diameter d = 20mm

pitch p = 2mm

friction coefficient of steel f = 0.1

Gravity constant is g = 10 N/kg

solution

we know T is

T = w tan(α + φ ) \frac{dm}{2}     ...................1

here dm is = do - 0.5 P

dm = 20 - 1

dm = 19 mm

and

tan(α) = \frac{L}{\pi dm}      ...............2

here lead L = n × p

so tan(α) = \frac{2\times 2}{\pi 19}

α = 3.83°  

and

f = 0.1

so tanφ = 0.1

so that φ = 5.71°

and  now we will put all value in equation 1 we get

T = 1000 × tan(3.83 + 5.71 ) \frac{19\times 10^{-3}}{2}  

T = 1.59 Nm

so

power = \frac{2\pi N \ T }{60}     .................3

put here value

power = \frac{2\pi \times 300\times 1.59}{60}

power = 49.95 W

and

as φ > α

so it is self locking screw

 

8 0
3 years ago
Which of the following are true about the American Wire Gauge?
harina [27]

Answer:

A. smallest wire is No. 12

7 0
3 years ago
Ai r is compressed by a 30-kW compressor from P1 to P2. The air t emperature i s maintained constant at 25oC during thi s proces
RUDIKE [14]

Answer:

The rate of entropy change of the air is -0.10067kW/K

Explanation:

We'll assume the following

1. It is a steady-flow process;

2. The changes in the kinetic energy and the potential energy are negligible;

3. Lastly, the air is an ideal gas

Energy balance will be required to calculate heat loss;

mh1 + W = mh2 + Q where W = Q.

Also note that the rate of entropy change of the air is calculated by calculating the rate of heat transfer and temperature of the air, as follows;

Rate of Entropy Change = -Q/T

Where Q = 30Kw

T = Temperature of air = 25°C = 298K

Rate = -30/298

Rate = -0.100671140939597 KW/K

Rate = -0.10067kW/K

Hence, the rate of entropy change of the air is -0.10067kW/K

3 0
3 years ago
Other questions:
  • A mass of 0.3 kg is suspended from a spring of stiffness 0.4 N/mm. The damping is 3.286335345 kg/s. What is the undamped natural
    5·1 answer
  • What do you think are the advantages and disadvantages of isothermal constant volume high extension cycle? And how efficient do
    13·1 answer
  • An aquifer has three different formations. Formation A has a thickness of 8.0 m and hydraulic conductivity of 25.0 m/d. Formatio
    9·1 answer
  • The Acme tool is aligned to the work with: A. A square B. The eye C. An Acme tool gage D. A center gage
    14·1 answer
  • What are the 2 reasons an alignment should be done?
    13·1 answer
  • Carbon dioxide at a temperature of 0oC and a pressure of 600 kPa (abs) flows through a horizontal 40-mm- diameter pipe with an a
    10·1 answer
  • Which of the following are made up of electrical probes and connectors?
    8·1 answer
  • As an employee, who is supposed to provide training on the chemicals you are handling or come in contact with at work?
    5·2 answers
  • A single-phase load is located 2800 ft from its source. The load draws a current of 86 A and operates on 480 V. The maximum volt
    10·1 answer
  • 7.35 and 7.36 For the beam and loading shown, (a) draw the shear and bending-moment diagrams, (b) determine the maximum absolute
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!