1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
3 years ago
9

what is the expected life 1 inch diameter bar machined from AISI 1020 CD Steel is subjected to alternating bending stress betwee

n 1 and 50 kpsi at 350 deg C. Find the factor of safety guarding against static (single cycle) failure, and either the factor of safety guarding against fatigue failure or the expected life of the part with 99 percent reliability.

Engineering
1 answer:
Alexeev081 [22]3 years ago
3 0

Answer:

1.287 *10⁷ cycles.

Explanation:

See attached pictures.

You might be interested in
During genetic engineering, how do Restriction enzymes know what base pairs to act on?
MaRussiya [10]

Answer:

The correct/closest option is b

Explanation:

Restriction enzymes are enzymes (endonucleases) that cut short DNA strands at specific sites. Hence, each restriction enzyme has it's own specific site (between two bases) it cuts at. There are two types of end that can be produced by this cut; the blunt end and the sticky end.

A restriction enzyme recognizes (palindromic sequence) and cut in it's own specific end.

For example, if a restriction enzyme cuts between a guanine (G) and an adenine (A), and it cuts a palindromic double stranded DNA in the manner below, it produces a sticky end.

G║AATTC

CTTAA║G

And if a restriction enzyme cuts between guanine (G) and cytosine (C) in the manner below, it produces a blunt end.

GGG║CCC

CCC║GGG

Hence, from the question, restriction enzymes (although chosen by the scientist based on desired sequence to be cut) recognize the sticky or blunt ends itself.

6 0
3 years ago
Unit for trigonometric functions is always "radian". 1. 10 points: Do NOT submit your MATLAB code for this problem (a) Given f(x
RoseWind [281]

Answer:

Below is the required code.

Explanation:

%% Newton Raphson Method

clear all;

clc;

x0=input('Initial guess:\n');

x=x0;

f=exp(-x)-sin(x)-0.2;

g=-exp(-x)-cos(x);

ep=10;

i=0;

cc=input('Condition of convergence:\n');

while ep>=cc

i=i+1;

temp=x;

x=x-(f/g);

f=exp(-x)-sin(x)-0.2;

g=-exp(-x)-cos(x);

ep=abs(x-temp);

fprintf('x = %6f and error = %6f at iteration = %2f \n',x,ep,i);

end

fprintf('The solution x = %6f \n',x);

%% End of MATLAB Program

Command Window:

(a) First Root:

Initial guess:

1.5

Condition of convergence:

0.01

x = -1.815662 and error = 3.315662 at iteration = 1.000000

x = -0.644115 and error = 1.171547 at iteration = 2.000000

x = 0.208270 and error = 0.852385 at iteration = 3.000000

x = 0.434602 and error = 0.226332 at iteration = 4.000000

x = 0.451631 and error = 0.017029 at iteration = 5.000000

x = 0.451732 and error = 0.000101 at iteration = 6.000000

The solution x = 0.451732

>>

Second Root:

Initial guess:

3.5

Condition of convergence:

0.01

x = 3.300299 and error = 0.199701 at iteration = 1.000000

x = 3.305650 and error = 0.005351 at iteration = 2.000000

The solution x = 3.305650

>>

(b) Guess x=0.5:

Initial guess:

0.5

Condition of convergence:

0.01

x = 0.450883 and error = 0.049117 at iteration = 1.000000

x = 0.451732 and error = 0.000849 at iteration = 2.000000

The solution x = 0.451732

>>

Guess x=1.75:

Initial guess:

1.75

Condition of convergence:

0.01

x = 227.641471 and error = 225.891471 at iteration = 1.000000

x = 218.000998 and error = 9.640473 at iteration = 2.000000

x = 215.771507 and error = 2.229491 at iteration = 3.000000

x = 217.692636 and error = 1.921130 at iteration = 4.000000

x = 216.703197 and error = 0.989439 at iteration = 5.000000

x = 216.970438 and error = 0.267241 at iteration = 6.000000

x = 216.971251 and error = 0.000813 at iteration = 7.000000

The solution x = 216.971251

>>

Guess x=3.0:

Initial guess:

3

Condition of convergence:

0.01

x = 3.309861 and error = 0.309861 at iteration = 1.000000

x = 3.305651 and error = 0.004210 at iteration = 2.000000

The solution x = 3.305651

>>

Guess x=4.7:

Initial guess:

4.7

Condition of convergence:

0.01

x = -1.916100 and error = 1.051861 at iteration = 240.000000

x = -0.748896 and error = 1.167204 at iteration = 241.000000

x = 0.162730 and error = 0.911626 at iteration = 242.000000

x = 0.428332 and error = 0.265602 at iteration = 243.000000

x = 0.451545 and error = 0.023212 at iteration = 244.000000

x = 0.451732 and error = 0.000187 at iteration = 245.000000

The solution x = 0.451732

>>

Explanation:

The two solutions are x =0.451732 and 3.305651 within the range 0 < x< 5.

The initial guess x = 1.75 fails to determine the solution as it's not in the range. So the solution turns to unstable with initial guess x = 1.75.

7 0
3 years ago
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
2 years ago
Match the word with the definition:
aksik [14]

1. Renewable Resources  = (Renewable means you can keep making it) =  resources that can be replenished (such as trees)

2. Nonrenewable Resources  =  ( Nonrenewable means it can't be made once it is used up) = resources that are gone once they are used (such as fossil fuels)

3. Producer  =  ( produces something) = person who makes goods or provides services

4. Consumer  = ( uses something) =   person whose wants are satisfied by using goods and services

5. Allocate  = ( put someplace) =   distribute

6. Choice =  option

7 0
3 years ago
Read 2 more answers
30 points and brainiest if correct please help A, B, C, D
tatuchka [14]

Answer:

B. to lock the tape into place

Explanation:

the button on the front of the housing locks the tape into place when pressed, preventing the tape from being pulled out further it retracting

4 0
2 years ago
Other questions:
  • An inventor claims to have developed a power cycle operating between hot and cold reservoirs at 1175 K and 295 K, respectively,
    9·1 answer
  • Consider two different types of motors. Motor A has a characteristic life of 4100 hours (based on a MTTF of 4650 hours) and a sh
    10·1 answer
  • Consider a 1.2-m-high and 2-m-wide glass window with a thickness of 6 mm, thermal conductivity k = 0.78 W/m·K, and emissivity ε
    5·1 answer
  • Why does an aeroplane smoke in the air​
    14·1 answer
  • what is the expected life 1 inch diameter bar machined from AISI 1020 CD Steel is subjected to alternating bending stress betwee
    9·1 answer
  • Which option explains why Tyler is impressed in the following scenario?
    10·2 answers
  • (4 points) What field of work generally requires (a) an engineer to have a Professional Engineer
    11·1 answer
  • A countinous shot that sense, flows well, and is understanable and pleasant to look at
    13·1 answer
  • Why is California a good place for engineers to build suspension bridges?
    12·1 answer
  • Which option distinguishes why the behaviors of the team in the following scenario are so important during the engineering desig
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!