Answer:
Molality = 0.0862 mole/kg
Explanation:
Molality = (number of moles of solute)/(mass of solvent in kg)
Number of moles of solute = (mass of Creatinine in the blood sample)/(Molar mass of Creatinine)
To obtain the mass of creatinine in 10 mL of blood. We're told that 1 mg of Creatinine is contained in 1 decilitre of blood.
1 decilitre = 100 mL
1 mg of Creatinine is contained in 100 mL of blood
x mg of Creatinine is contained in 10 mL of blood.
x = (1×10/100) = 0.1 mg = 0.0001 g
Molar mass of Creatinine (C₄H₇N₃O) = 113.12 g/mol
Number of moles of Creatinine in the 10 mL blood sample = (0.0001/113.12) = 0.000000884 moles
Mass of 10 mL of blood = density × volume = 1.025 × 10 = 10.25 mg = 0.01025 g = 0.00001025 kg
Molality of normal creatinine level in a 10.0-ml blood sample = (0.000000884/0.00001025)
Molality = 0.0862 moles of Creatinine per kg of blood.
Hope this Helps!!!
Answer:
d) additional heat alters the vicosity and the surface tension of the liquid which raises the vapor pressure and increases the boiling point which is why you must continually heat the solution
In order to balance out the Electrons, and give it a net charge of 0, you would need 79 Protons.
Answer: The donating of hydrogen ions is what makes an acid an acid. A base, however, is a substance that accepts hydrogen ions.
Explanation: