Answer:
n= 0.03 moles
Explanation:
Using the ideal gas law:
PV=nRT
nRT=PV
n= PV/RT
n: moles
P: pressure in atm
V= volume in L
R= Avogadro's constant = 0.0821
T= Temperature in K => ºC+273.15
n= (0.925 atm)(0.80 L) / (0.0821)(300.15 K)
n= 0.03 moles
Answer:
Theoretical yield of hydrogen is 1.11 g
Explanation:
Balanced equation, 
As Mg remain present in excess therefore HCl is the limiting reagent.
According to balanced equation, 2 moles of HCl produce 1 mol of
.
Molar mass of HCl = 36.46 g/mol
So, 40.0 g of HCl =
of HCl = 1.10 moles of HCl
Hence, theoretically, number of moles of
are produced from 1.10 moles of HCl = 
Molar mass of
= 2.016 g/mol
So, theoretical yield of
= 
The frequency of a wave represents B. the number of wave cycles that pass through a specific point within a given time.
The distance between two consecutive crests and the length of a wave are the <em>wavelength</em>.
The distance between the highest and lowest points of a wave is <em>twice the amplitude</em>.
Dry air is a mixture of nitrogen, oxygen, carbon dioxide etc.
air is a mixture of gases 78% nitrogen an 21% oxygen and other components.
Answer:
E = 3.77×10⁻¹⁹ J
Explanation:
Given data:
Wavelength of absorption line = 527 nm (527×10⁻⁹m)
Energy of absorption line = ?
Solution:
Formula:
E = hc/λ
h = planck's constant = 6.63×10⁻³⁴ Js
c = speed of wave = 3×10⁸ m/s
by putting values,
E = 6.63×10⁻³⁴ Js × 3×10⁸ m/s / 527×10⁻⁹m
E = 19.89×10⁻²⁶ Jm /527×10⁻⁹m
E = 0.0377×10⁻¹⁷ J
E = 3.77×10⁻¹⁹ J