Answer:

Explanation:
Hello,
In this case, we can consider the n-propanol as the solute (lower amount) and the t-butanol as the solvent (higher amount), for which, initially, we must compute the moles of n-propanol (molar mass = 60.1 g/mol) as shown below:

Since the molality is computed via:

Whereas the mass of the solvent is used in kilograms (0.0130g for the given one). Thus, we compute the resulting molality of the solution:

Or just:

Best regards.
Answer:
London dispersion
Explanation:
I got the question right (;
First, we need to get the number of moles:
from the reaction equation when Y4+ takes 4 electrons and became Y, X loses 4 electrons and became X4+
∴ the number of moles n = 4
we are going to use this formula:
㏑K = n *F *E/RT
when K is the equilibrium constant = 4.98 x 10^-5
and F is Faraday's constant = 96500
and the constant R = 8.314
and T is the temperature in Kelvin = 298 K
and n is number of moles of electrons = 4
so, by substitution:
㏑4.98 x 10^-5 = 4*96500*E / 8.314*298
∴E = -0.064 V
250 Kelvin = 76.85 Celsius