Answer:

Explanation:
Hello.
In this case, we can solve this problem by applying the Boyle's law which allows us to understand the pressure-volume behavior as a directly proportional relationship:

In such away, knowing the both the initial pressure and volume and the final volume, we can compute the final pressure as shown below:

Consider that the given initial pressure is also equal to Pa:

Which stands for a pressure increase when volume decreases.
Regards.
Answer:
isolated system (plural isolated systems) (physics) A system that does not interact with its surroundings. Depending on context this may mean that its total energy and/or momentum stay constant.
Explanation:
An isolated system is a thermodynamic system that cannot exchange either energy or matter outside the boundaries of the system. ... The system may be enclosed such that neither energy nor mass may enter or exit.
is there both?
Answer:
Ke = 34570.707
Explanation:
- H2(g) + Br2(g) → 2 HBr(g)
equilibrium constant (Ke):
⇒ Ke = [HBr]² / [Br2] [H2]
∴ [HBr] = (37.0 mol) / (2 L) = 18.5 mol/L
∴ [Br2] = (0.110 mol) / (2 L) = 0.055 mol/L
∴ [H2] = (0.360 mol) / (2 L) = 0.18 mol/L
⇒ Ke = (18.5 mol/L)² / (0.055 mol/L)(0.18 mol/L)
⇒ Ke = 34570.707
2x 6.022x10^23= 1.204x10^24
Hey!!
here is your answer >>>
The answer for your question is the tension. We lift it up and the tension is exerted by the object downwards!.
Hope my answer helps!