Some colours appear as white
Answer:
If you see in the image above, there is an unbalance force applied while playing tug of war. Since it is 1 vs 2, there is a greater net force in the right side then the left side. If it was 2 vs 2 or 1 vs 1, then they are appling balance force. You can also see in the picture that the arrows are pointing outwards (--->) rather then inwards (<---) because you are pulling the rope not pushing the rope. If you add one person on the left side, then the newtons which is 20N will become to 35N and will be balanced, but since there in only 1 person, there is less force on the left side, the newtons gets subtracted having only 20N. Since you are pulling the rope, the friction is opposite (<---). Since you are pulling the rope, you are using Kinetic force and the rope stays in potential force since it stays constant.
Hope this helps, thank you :) and I am not sure about magnitude I think you can that since there is greater force on the right side, there is more magnitude there.
Mass box C is 10+5. (So C is 15)
But if C was 30, how many times could you put B (5) into it?
30/5 = 6
You would need 6 boxes of B to make 30 grams of C.
Answer:
L/EGFOU;T4444444444444444444444czgfryewi;adkb,SJJ>RL:IAO:YHSBRAGldOUSDHRIUITUER
Explanation:
DHFUIEY7RY8EFUIDJKJEUSDYRIFU8ERJFHJSX
Answer:
Barium has a greater radius than magnesium
Explanation:
Barium and magnesium are two elements which belong to the same group, group 2A. This means that the two elements have two valence electrons in their outer shell.
The difference is, however, since barium is lower in group than magnesium, it has more electron shells than magnesium and, therefore, its radius is greater. The attraction force between the nucleus and the valence electrons in barium is lower as a result, as force is inversely proportional to distance. Hence, a lower amount of energy is required to remove the valence electrons from barium.