Answer: COMBINED FORCES
When forces act in the same direction, they combine to make a bigger force. When they act in opposite directions, they can cancel one another out. If the forces acting on an object balance, the object does not move, but may change shape.
Explanation:
a thin solid glass rod that is used in chemistry to combine substances. A stirring rod often has rounded ends and is about the length of a long straw.
<h3>What use serves the stirring rod?</h3>
A crucial component of lab apparatus for mixing chemicals and liquids for reactions is a long, thin stirring rod. Stirring rods are made of solid plastic, glass, or steel and are non-abrasive, chemically inert, and chemically resistant.
<h3>What is the name of the glass stirring rod?</h3>
Glass rod, also known as a stirring rod, stir rod, or solid glass rod, is frequently made of quartz and borosilicate glass. Its diameter and length can be modified to meet your needs.
<h3>Does filtration employ stirring rods?</h3>
When the liquid transfer procedure is paused, use a stirring rod to direct the liquid flow into the funnel and stop small amounts of liquid from dribbling down the beaker's outside.
learn more about stirring rod here
<u>brainly.com/question/9971891</u>
#SPJ4
<span>11.3 kPa
The ideal gas law is
PV = nRT
where
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = Absolute temperature
We have everything except moles and volume. But we can calculate moles by starting with the atomic weight of argon and neon.
Atomic weight argon = 39.948
Atomic weight neon = 20.1797
Moles Ar = 1.00 g / 39.948 g/mol = 0.025032542 mol
Moles Ne = 0.500 g / 20.1797 g/mol = 0.024777375 mol
Total moles gas particles = 0.025032542 mol + 0.024777375 mol = 0.049809918 mol
Now take the ideal gas equation and solve for P, then substitute known values and solve.
PV = nRT
P = nRT/V
P = 0.049809918 mol * 8.3144598 L*kPa/(K*mol) * 275 K/5.00 L
P = 113.8892033 L*kPa / 5.00 L
P = 22.77784066 kPa
Now let's determine the percent of pressure provided by neon by calculating the percentage of neon atoms. Divide the number of moles of neon by the total number of moles.
0.024777375 mol / 0.049809918 mol = 0.497438592
Now multiply by the pressure
0.497438592 * 22.77784066 kPa = 11.33057699 kPa
Round the result to 3 significant figures, giving 11.3 kPa</span>
Answer:
Specific heat of solid A is greater than specific heat of solid B.
Explanation:
In the calorimeter, as the temperature is increasing, the vibrational kinetic energy will increase and this means that additional amount of energy will be needed to increase the temperature by the same value. Therefore, we can conclude that specific heat increases as temperature increases.
Now, we are told that the final temperature of solid A's calorimeter is higher than that of B.
This means from our definition earlier, Solid A will have a higher specific heat that solid B.
Answer:
n = 2.208x10¹⁸ photons
Explanation:
The energy of a photon( an elementary particle) is given by the equation:
E = nxhxf
Where n is the number of photons, h is plank constant (6,62x10⁻³⁴ J.s), and f is the frequency. Knowing that the power level is 0.120mW (1.2x10⁻⁴ W), the energy in J, for a time of 78 min (4680 s)
E = 1.2x10⁻⁴x4680 = 0.5616 J
The frequency of a photon is its velocity ( c= 3x10⁸ m/s) divided by its wavelength, which is 780 nm = 780x10⁻⁹ m
f = 3x10⁸/780x10⁻⁹
f = 3.846x10¹⁴ s⁻¹
Then, the number of photons is:
0.5616 = nx6,62x10⁻³⁴x3.846x10¹⁴
n = 2.208x10¹⁸ photons.