Answer:
I₁ =1250 kg.m²
Explanation:
Given that
Angular speed of Merry ,ω₁= 0.2 rad/s
Angular speed of technician ,ω₂= 0.04 rad/s
Moment of the inertia of the technician ,I₂= 5000 kg.m²
Lets assume that
Moment of the inertia of merry with respected to the ground=I₁
There is no any external torque ,that is why angular momentum of the system will be conserve.
Now by conserving angular momentum
I₁ ω₁=(I₁+I₂)ω₂
I₁ x 0.2 = (I₁ +5000 ) x 0.04
I₁ (0.2-0.04) = 5000 x 0.04

I₁ =1250 kg.m²
The electric potential energy of the charge is reduced because it decreases with increase in the distance between charges.
<h3>What is electric potential energy?</h3>
Electric potential energy can be defined as the energy needed to move a charge against an electric field.
It is calculated using the formula;
U = Kq1 q2 ÷ r
Where Q = electric potential energy
k = Coulombs constant
q1 and q2 = charges
r = distance of separation
Electric potential energy is inversely proportional to the distance of separation of the charges.
If the distance of the charges changes from 3mm to 6mm, then the electric potential energy of the charges is reduced because it decreases with increase in the distance of the charges.
Therefore, the electric potential energy of the charge is reduced because it decreases with increase in the distance between charges.
Learn more about electric potential energy here:
brainly.com/question/14812976
#SPJ1
1) 
The capacitance of a parallel-plate capacitor is given by:

where
is the vacuum permittivity
A is the area of each plate
d is the distance between the plates
Here, the radius of each plate is

so the area is

While the separation between the plates is

So the capacitance is

And now we can find the energy stored,which is given by:

2) 0.71 J/m^3
The magnitude of the electric field is given by

and the energy density of the electric field is given by

and using
, we find

Its called compressing the gas
Answer:
Explanation: N2 Nitrogen, O2 Oxygen, Ar does not form molecules