Answer:
5.7058kj/mole
Explanation:
Please see attachment for step by step guide
Answer:
Part 1: It would be a straight line, current will be directly proportional to the voltage.
Part 2: The current would taper off and will have negligible increase after the voltage reaches a certain value. Graph attached.
Explanation:
For the first part, voltage and current have a linear relationship as dictated by the Ohm's law.
V=I*R
where V is the voltage, I is the current, and R is the resistance. As the Voltage increase, current is bound to increase too, given that the resistance remains constant.
In the second part, resistance is not constant. As an element heats up, it consumes more current because the free sea of electrons inside are moving more rapidly, disrupting the flow of charge. So, as the voltage increase, the current does increase, but so does the resistance. Leaving less room for the current to increase. This rise in temperature is shown in the graph attached, as current tapers.
Answer:
Temperature
Explanation:
In an ideal gas the specific enthalpy is exclusively a function of Temperature only this can be also written as h = h(T)
A gas is said be ideal gas if obeys PV= nRT law
And in a ideal gas both internal energy and specific enthalpy are a function of Temperature only. Therefore the constant volume and constant pressure specific heats Cv and Cp are also function of temperature only.
Answer:
A). Dry unit weight = 1657.08Kg/m3
B). Porosity = 0.37
C). Void ratio = 0.593
D). 0.712
Explanation:
Total unit weight, Y = 120pcf =1922.2 Kg/m3
Specific gravity of solids, Gs = 2.64
Water content, w = 16%
A). Dry unit weight
Yd = Y/(1+w)
= 1922.2/(1+0.16) = 1657.08Kg/m3
B). Porosity
However void ratio, e = Gs×Yw/Yd, where Yw = 1000Kg/m3
Void ratio = 2.64×1000/1657.08 = 0.593
And porosity = e/(1+e) =0.593/(1+0.593) = 0.37
C). void ratio, e = 0.593
D). Degree of saturation, S = m×Gs/e where m =water content
S = 0.16×2.64/0.593 = 0.712