Can I get a picture? Of the question so I can understand it more?
Answer:
8 to 10 times
Explanation:
For dry road
u= 15 mph ( 1 mph = 0.44 m/s)
u= 6.7 m/s
Let take coefficient of friction( μ) of dry road is 0.7
So the de acceleration a = μ g
a= 0.7 x 10 m/s ² ( g=10 m/s ²)
a= 7 m/s ²
We know that
v= u - a t
Final speed ,v=0
0 = 6.7 - 7 x t
t= 0.95 s
For snow road
μ = 0.4
de acceleration a = μ g
a = 0.4 x 10 = 4 m/s ²
u= 30 mph= 13.41 m/s
v= u - a t
Final speed ,v=0
0 = 30 - 4 x t'
t'=7.5 s
t'=7.8 t
We can say that it will take 8 to 10 times more time as compare to dry road for stopping the vehicle.
8 to 10 times
Answer:
See attachment for chart
Explanation:
The IPO chart implements he following algorithm
The expressions in bracket are typical examples
<u>Input</u>
Input Number (5, 4.2 or -1.2) --- This will be passed to the Processing module
<u>Processing</u>
Assign variable to the input number (x)
Calculate the square (x = 5 * 5)
Display the result (25) ----> This will be passed to the output module
<u>Output</u>
Display 25
Explanation:
The end-use industries of thermochromic materials include packaging, printing & coating, medical, textile, industrial, and others. Printing & coating is the fastest-growing end-use industry of thermochromic materials owing to a significant increase in the demand for thermal paper for POS systems. The use of thermochromic materials is gaining momentum for interactive packaging that encourages consumers to take a product off the shelf and use it.