Answer:
R = 148.346 N
M₀ = - 237.2792 N-m
Explanation:
Point O is selected as a convenient reference point for the force-couple system which is to represent the given system
We can apply
∑Fx = Rx = - 60N*Cos 45° + 40N + 80*Cos 30° = 66.8556 N
∑Fy = Ry = 60N*Sin 45° + 50N + 80*Sin 30° = 132.4264 N
Then
R = √(Rx²+Ry²) ⇒ R = √((66.8556 N)²+(132.4264 N)²)
⇒ R = 148.346 N
Now, we obtain the moment about the origin as follows
M₀ = (0 m*40 N)-(7 m*60 N*Sin 45°)+(4 m*60 N*Cos 45°)-(5 m*50 N)+ 140 N-m + (0 m*80 N*Cos 30°) + (0 m*80 N*Sin 30°) = - 237.2792 N-m (clockwise)
We can see the pic shown in order to understand the question.
Answer: Option D) 298 g/mol is the correct answer
Explanation:
Given that;
Mass of sample m = 13.7 g
pressure P = 2.01 atm
Volume V = 0.750 L
Temperature T = 399 K
Now taking a look at the ideal gas equation
PV = nRT
we solve for n
n = PV/RT
now we substitute
n = (2.01 atm x 0.750 L) / (0.0821 L-atm/mol-K x 399 K
)
= 1.5075 / 32.7579
= 0.04601 mol
we know that
molar mass of the compound = mass / moles
so
Molar Mass = 13.7 g / 0.04601 mol
= 297.7 g/mol ≈ 298 g/mol
Therefore Option D) 298 g/mol is the correct answer
Answer:

Explanation:
The adiabatic throttling process is modelled after the First Law of Thermodynamics:


Properties of water at inlet and outlet are obtained from steam tables:
State 1 - Inlet (Liquid-Vapor Mixture)





State 2 - Outlet (Superheated Vapor)




The change of entropy of the steam is derived of the Second Law of Thermodynamics:


Answer:
the surface heat-transfer coefficient due to natural convection during the initial cooling period. = 4.93 w/m²k
Explanation:
check attachement for answer explanation
Answer:
hshdhriwjajaldh skshdjdywuusg
Explanation:
null