The answer is head-to-tail joining of monomers. Monomer used in condensation have two functional groups that combine to form amide and ester linkages. When this reaction occurs, water molecules is removed and that is why it is called a condensation reaction.
Adding or removing neutrons from the nucleus are how isotopes are created. Protons carry a positive electrical charge and they alone determine the charge of the nucleus. Adding or removing protons from the nucleus changes the charge of the nucleus and changes that atom's atomic number.
Answer:

Explanation:
![\Delta H_{rxn}^{0}=\sum [n_{i}\times \Delta H_{f}^{0}(product)_{i}]-\sum [n_{j}\times \Delta H_{f}^{0}(reactant_{j})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%5E%7B0%7D%3D%5Csum%20%5Bn_%7Bi%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28product%29_%7Bi%7D%5D-%5Csum%20%5Bn_%7Bj%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28reactant_%7Bj%7D%29%5D)
Where
and
are number of moles of product and reactant respectively (equal to their stoichiometric coefficient).
is standard heat of formation and
is standard enthalpy change for reaction at 
So, ![\Delta H_{rxn}=[3mol\times \Delta H_{f}^{0}(CO_{2})_{g}]+[4mol\times \Delta H_{f}^{0}(H_{2}O)_{g}]-[1mol\times \Delta H_{f}^{0}(C_{3}H_{8})_{g}]-[5mol\times \Delta H_{f}^{0}(O_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B3mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28CO_%7B2%7D%29_%7Bg%7D%5D%2B%5B4mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28H_%7B2%7DO%29_%7Bg%7D%5D-%5B1mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28C_%7B3%7DH_%7B8%7D%29_%7Bg%7D%5D-%5B5mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28O_%7B2%7D%29_%7Bg%7D%5D)
or, ![\Delta H_{rxn}=[3mol\times -393.509kJ/mol]+[4mol\times -241.818kJ/mol]-[1mol\times -103.8kJ/mol]-[5mol\times 0kJ/mol]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B3mol%5Ctimes%20-393.509kJ%2Fmol%5D%2B%5B4mol%5Ctimes%20-241.818kJ%2Fmol%5D-%5B1mol%5Ctimes%20-103.8kJ%2Fmol%5D-%5B5mol%5Ctimes%200kJ%2Fmol%5D)
or, 
The correct answer is D, they are reviewed by experts.
<em>(Please mark this answer as Brainliest and leave a Thanks if I helped you!)</em>
Answer:
d. More gas molecules are soluble as pressure is increased
Explanation:
Liquids and solids exhibit practically no change of solubility with changes in pressure. Gases as might be expected, increase in solubility with an increase in pressure.
Henry's Law states that: The solubility of a gas in a liquid is directly proportional to the pressure of that gas above the surface of the solution.
If the pressure is increased, the gas molecules are "forced" into the
solution since this will best relieve the pressure that has been applied and as a result The number of gas molecules
dissolved in solution will be increased